Loading…
X-ray photon correlation spectroscopy under flow
X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes takin...
Saved in:
Published in: | Journal of synchrotron radiation 2008-07, Vol.15 (4), p.378-384 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03 |
---|---|
cites | |
container_end_page | 384 |
container_issue | 4 |
container_start_page | 378 |
container_title | Journal of synchrotron radiation |
container_volume | 15 |
creator | Fluerasu, Andrei Moussaïd, Abdellatif Falus, Péter Gleyzolle, Henri Madsen, Anders |
description | X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q. |
doi_str_mv | 10.1107/S0909049508006420 |
format | article |
fullrecord | <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_69213958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69213958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03</originalsourceid><addsrcrecordid>eNqFkE9PwjAYhxujEUU_gBfDydv07br-2dEQBQkBAxj11JSui9NBZ7sF9-0dGVETD-Q99D08zy9vfwhdYLjGGPjNHOJmopiCAGBRCAfoBDOAgHJOD__sHXTq_TsAZjwkx6iDBaVhRPAJgpfAqbpXvNnSrnvaOmdyVWbN7gujS2e9tkXdq9aJcb00t5szdJSq3Jvz3dtFT_d3i_4wGE8HD_3bcaCba3CQAE8jrRUnRoSYsCThQilGgBuFIQ4jTEScsjRUqUlSzRJhqFguCRUCYpYA6aKrNrdw9rMyvpSrzGuT52ptbOUli5vYmIq9ICEMBBVRA-IW1M2vvDOpLFy2Uq6WGOS2T_mvz8a53IVXy5VJfo1dgQ0gWmCT5abenyhH89fpglKxVYNWzXxpvn5U5T4k44RT-TwZyOGE9kePs7GckW9cc450</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33608584</pqid></control><display><type>article</type><title>X-ray photon correlation spectroscopy under flow</title><source>Wiley Online Library Open Access</source><creator>Fluerasu, Andrei ; Moussaïd, Abdellatif ; Falus, Péter ; Gleyzolle, Henri ; Madsen, Anders</creator><creatorcontrib>Fluerasu, Andrei ; Moussaïd, Abdellatif ; Falus, Péter ; Gleyzolle, Henri ; Madsen, Anders</creatorcontrib><description>X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S0909049508006420</identifier><identifier>PMID: 18552431</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>coherent X-ray diffraction ; colloids ; dynamics ; flow ; microfluidics ; X-ray photon correlation spectroscopy</subject><ispartof>Journal of synchrotron radiation, 2008-07, Vol.15 (4), p.378-384</ispartof><rights>International Union of Crystallography, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0909049508006420$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0909049508006420$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0909049508006420$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18552431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fluerasu, Andrei</creatorcontrib><creatorcontrib>Moussaïd, Abdellatif</creatorcontrib><creatorcontrib>Falus, Péter</creatorcontrib><creatorcontrib>Gleyzolle, Henri</creatorcontrib><creatorcontrib>Madsen, Anders</creatorcontrib><title>X-ray photon correlation spectroscopy under flow</title><title>Journal of synchrotron radiation</title><addtitle>J. Synchrotron Rad</addtitle><description>X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.</description><subject>coherent X-ray diffraction</subject><subject>colloids</subject><subject>dynamics</subject><subject>flow</subject><subject>microfluidics</subject><subject>X-ray photon correlation spectroscopy</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwjAYhxujEUU_gBfDydv07br-2dEQBQkBAxj11JSui9NBZ7sF9-0dGVETD-Q99D08zy9vfwhdYLjGGPjNHOJmopiCAGBRCAfoBDOAgHJOD__sHXTq_TsAZjwkx6iDBaVhRPAJgpfAqbpXvNnSrnvaOmdyVWbN7gujS2e9tkXdq9aJcb00t5szdJSq3Jvz3dtFT_d3i_4wGE8HD_3bcaCba3CQAE8jrRUnRoSYsCThQilGgBuFIQ4jTEScsjRUqUlSzRJhqFguCRUCYpYA6aKrNrdw9rMyvpSrzGuT52ptbOUli5vYmIq9ICEMBBVRA-IW1M2vvDOpLFy2Uq6WGOS2T_mvz8a53IVXy5VJfo1dgQ0gWmCT5abenyhH89fpglKxVYNWzXxpvn5U5T4k44RT-TwZyOGE9kePs7GckW9cc450</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Fluerasu, Andrei</creator><creator>Moussaïd, Abdellatif</creator><creator>Falus, Péter</creator><creator>Gleyzolle, Henri</creator><creator>Madsen, Anders</creator><general>International Union of Crystallography</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200807</creationdate><title>X-ray photon correlation spectroscopy under flow</title><author>Fluerasu, Andrei ; Moussaïd, Abdellatif ; Falus, Péter ; Gleyzolle, Henri ; Madsen, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>coherent X-ray diffraction</topic><topic>colloids</topic><topic>dynamics</topic><topic>flow</topic><topic>microfluidics</topic><topic>X-ray photon correlation spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fluerasu, Andrei</creatorcontrib><creatorcontrib>Moussaïd, Abdellatif</creatorcontrib><creatorcontrib>Falus, Péter</creatorcontrib><creatorcontrib>Gleyzolle, Henri</creatorcontrib><creatorcontrib>Madsen, Anders</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fluerasu, Andrei</au><au>Moussaïd, Abdellatif</au><au>Falus, Péter</au><au>Gleyzolle, Henri</au><au>Madsen, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray photon correlation spectroscopy under flow</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J. Synchrotron Rad</addtitle><date>2008-07</date><risdate>2008</risdate><volume>15</volume><issue>4</issue><spage>378</spage><epage>384</epage><pages>378-384</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>18552431</pmid><doi>10.1107/S0909049508006420</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1600-5775 |
ispartof | Journal of synchrotron radiation, 2008-07, Vol.15 (4), p.378-384 |
issn | 1600-5775 0909-0495 1600-5775 |
language | eng |
recordid | cdi_proquest_miscellaneous_69213958 |
source | Wiley Online Library Open Access |
subjects | coherent X-ray diffraction colloids dynamics flow microfluidics X-ray photon correlation spectroscopy |
title | X-ray photon correlation spectroscopy under flow |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20photon%20correlation%20spectroscopy%20under%20flow&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Fluerasu,%20Andrei&rft.date=2008-07&rft.volume=15&rft.issue=4&rft.spage=378&rft.epage=384&rft.pages=378-384&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S0909049508006420&rft_dat=%3Cproquest_24P%3E69213958%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33608584&rft_id=info:pmid/18552431&rfr_iscdi=true |