Loading…

X-ray photon correlation spectroscopy under flow

X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes takin...

Full description

Saved in:
Bibliographic Details
Published in:Journal of synchrotron radiation 2008-07, Vol.15 (4), p.378-384
Main Authors: Fluerasu, Andrei, Moussaïd, Abdellatif, Falus, Péter, Gleyzolle, Henri, Madsen, Anders
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03
cites
container_end_page 384
container_issue 4
container_start_page 378
container_title Journal of synchrotron radiation
container_volume 15
creator Fluerasu, Andrei
Moussaïd, Abdellatif
Falus, Péter
Gleyzolle, Henri
Madsen, Anders
description X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.
doi_str_mv 10.1107/S0909049508006420
format article
fullrecord <record><control><sourceid>proquest_24P</sourceid><recordid>TN_cdi_proquest_miscellaneous_69213958</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69213958</sourcerecordid><originalsourceid>FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03</originalsourceid><addsrcrecordid>eNqFkE9PwjAYhxujEUU_gBfDydv07br-2dEQBQkBAxj11JSui9NBZ7sF9-0dGVETD-Q99D08zy9vfwhdYLjGGPjNHOJmopiCAGBRCAfoBDOAgHJOD__sHXTq_TsAZjwkx6iDBaVhRPAJgpfAqbpXvNnSrnvaOmdyVWbN7gujS2e9tkXdq9aJcb00t5szdJSq3Jvz3dtFT_d3i_4wGE8HD_3bcaCba3CQAE8jrRUnRoSYsCThQilGgBuFIQ4jTEScsjRUqUlSzRJhqFguCRUCYpYA6aKrNrdw9rMyvpSrzGuT52ptbOUli5vYmIq9ICEMBBVRA-IW1M2vvDOpLFy2Uq6WGOS2T_mvz8a53IVXy5VJfo1dgQ0gWmCT5abenyhH89fpglKxVYNWzXxpvn5U5T4k44RT-TwZyOGE9kePs7GckW9cc450</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>33608584</pqid></control><display><type>article</type><title>X-ray photon correlation spectroscopy under flow</title><source>Wiley Online Library Open Access</source><creator>Fluerasu, Andrei ; Moussaïd, Abdellatif ; Falus, Péter ; Gleyzolle, Henri ; Madsen, Anders</creator><creatorcontrib>Fluerasu, Andrei ; Moussaïd, Abdellatif ; Falus, Péter ; Gleyzolle, Henri ; Madsen, Anders</creatorcontrib><description>X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.</description><identifier>ISSN: 1600-5775</identifier><identifier>ISSN: 0909-0495</identifier><identifier>EISSN: 1600-5775</identifier><identifier>DOI: 10.1107/S0909049508006420</identifier><identifier>PMID: 18552431</identifier><language>eng</language><publisher>5 Abbey Square, Chester, Cheshire CH1 2HU, England: International Union of Crystallography</publisher><subject>coherent X-ray diffraction ; colloids ; dynamics ; flow ; microfluidics ; X-ray photon correlation spectroscopy</subject><ispartof>Journal of synchrotron radiation, 2008-07, Vol.15 (4), p.378-384</ispartof><rights>International Union of Crystallography, 2008</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://onlinelibrary.wiley.com/doi/pdf/10.1107%2FS0909049508006420$$EPDF$$P50$$Gwiley$$H</linktopdf><linktohtml>$$Uhttps://onlinelibrary.wiley.com/doi/full/10.1107%2FS0909049508006420$$EHTML$$P50$$Gwiley$$H</linktohtml><link.rule.ids>314,780,784,11562,27924,27925,46052,46476</link.rule.ids><linktorsrc>$$Uhttps://onlinelibrary.wiley.com/doi/abs/10.1107%2FS0909049508006420$$EView_record_in_Wiley-Blackwell$$FView_record_in_$$GWiley-Blackwell</linktorsrc><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18552431$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fluerasu, Andrei</creatorcontrib><creatorcontrib>Moussaïd, Abdellatif</creatorcontrib><creatorcontrib>Falus, Péter</creatorcontrib><creatorcontrib>Gleyzolle, Henri</creatorcontrib><creatorcontrib>Madsen, Anders</creatorcontrib><title>X-ray photon correlation spectroscopy under flow</title><title>Journal of synchrotron radiation</title><addtitle>J. Synchrotron Rad</addtitle><description>X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.</description><subject>coherent X-ray diffraction</subject><subject>colloids</subject><subject>dynamics</subject><subject>flow</subject><subject>microfluidics</subject><subject>X-ray photon correlation spectroscopy</subject><issn>1600-5775</issn><issn>0909-0495</issn><issn>1600-5775</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE9PwjAYhxujEUU_gBfDydv07br-2dEQBQkBAxj11JSui9NBZ7sF9-0dGVETD-Q99D08zy9vfwhdYLjGGPjNHOJmopiCAGBRCAfoBDOAgHJOD__sHXTq_TsAZjwkx6iDBaVhRPAJgpfAqbpXvNnSrnvaOmdyVWbN7gujS2e9tkXdq9aJcb00t5szdJSq3Jvz3dtFT_d3i_4wGE8HD_3bcaCba3CQAE8jrRUnRoSYsCThQilGgBuFIQ4jTEScsjRUqUlSzRJhqFguCRUCYpYA6aKrNrdw9rMyvpSrzGuT52ptbOUli5vYmIq9ICEMBBVRA-IW1M2vvDOpLFy2Uq6WGOS2T_mvz8a53IVXy5VJfo1dgQ0gWmCT5abenyhH89fpglKxVYNWzXxpvn5U5T4k44RT-TwZyOGE9kePs7GckW9cc450</recordid><startdate>200807</startdate><enddate>200807</enddate><creator>Fluerasu, Andrei</creator><creator>Moussaïd, Abdellatif</creator><creator>Falus, Péter</creator><creator>Gleyzolle, Henri</creator><creator>Madsen, Anders</creator><general>International Union of Crystallography</general><scope>BSCLL</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7U5</scope><scope>8FD</scope><scope>L7M</scope><scope>7X8</scope></search><sort><creationdate>200807</creationdate><title>X-ray photon correlation spectroscopy under flow</title><author>Fluerasu, Andrei ; Moussaïd, Abdellatif ; Falus, Péter ; Gleyzolle, Henri ; Madsen, Anders</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>coherent X-ray diffraction</topic><topic>colloids</topic><topic>dynamics</topic><topic>flow</topic><topic>microfluidics</topic><topic>X-ray photon correlation spectroscopy</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fluerasu, Andrei</creatorcontrib><creatorcontrib>Moussaïd, Abdellatif</creatorcontrib><creatorcontrib>Falus, Péter</creatorcontrib><creatorcontrib>Gleyzolle, Henri</creatorcontrib><creatorcontrib>Madsen, Anders</creatorcontrib><collection>Istex</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of synchrotron radiation</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Fluerasu, Andrei</au><au>Moussaïd, Abdellatif</au><au>Falus, Péter</au><au>Gleyzolle, Henri</au><au>Madsen, Anders</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>X-ray photon correlation spectroscopy under flow</atitle><jtitle>Journal of synchrotron radiation</jtitle><addtitle>J. Synchrotron Rad</addtitle><date>2008-07</date><risdate>2008</risdate><volume>15</volume><issue>4</issue><spage>378</spage><epage>384</epage><pages>378-384</pages><issn>1600-5775</issn><issn>0909-0495</issn><eissn>1600-5775</eissn><abstract>X‐ray photon correlation spectroscopy was used to probe the diffusive dynamics of colloidal particles in a shear flow. Combining X‐ray techniques with microfluidics is an experimental strategy that reduces the risk of X‐ray‐induced beam damage and also allows time‐resolved studies of processes taking place in flow cells. The experimental results and theoretical predictions presented here show that in the low shear limit for a `transverse flow' scattering geometry (scattering wavevector q perpendicular to the direction of flow) the measured relaxation times are independent of the flow rate and determined only by the diffusive motion of the particles. This is not generally valid and, in particular, for a `longitudinal flow' (q ∥ flow) scattering geometry the relaxation times are strongly affected by the flow‐induced motion of the particles. The results here show that the Brownian diffusion of colloidal particles can be measured in a flowing sample and that, up to flux limitations, the experimental conditions under which this is possible are easier to achieve at higher values of q.</abstract><cop>5 Abbey Square, Chester, Cheshire CH1 2HU, England</cop><pub>International Union of Crystallography</pub><pmid>18552431</pmid><doi>10.1107/S0909049508006420</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1600-5775
ispartof Journal of synchrotron radiation, 2008-07, Vol.15 (4), p.378-384
issn 1600-5775
0909-0495
1600-5775
language eng
recordid cdi_proquest_miscellaneous_69213958
source Wiley Online Library Open Access
subjects coherent X-ray diffraction
colloids
dynamics
flow
microfluidics
X-ray photon correlation spectroscopy
title X-ray photon correlation spectroscopy under flow
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-30T21%3A46%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_24P&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=X-ray%20photon%20correlation%20spectroscopy%20under%20flow&rft.jtitle=Journal%20of%20synchrotron%20radiation&rft.au=Fluerasu,%20Andrei&rft.date=2008-07&rft.volume=15&rft.issue=4&rft.spage=378&rft.epage=384&rft.pages=378-384&rft.issn=1600-5775&rft.eissn=1600-5775&rft_id=info:doi/10.1107/S0909049508006420&rft_dat=%3Cproquest_24P%3E69213958%3C/proquest_24P%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c5081-d07f4cca73e82136dd78aa6307ea109241389f6f2afedfc6d8e58bb3588096d03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=33608584&rft_id=info:pmid/18552431&rfr_iscdi=true