Loading…

A Detailed Molecular Belt Model for Apolipoprotein A-I in Discoidal High Density Lipoprotein

Apolipoprotein A-I (apoA-I) is the principal protein of high density lipoprotein particles (HDL). ApoA-I contains a globular N-terminal domain (residues 1–43) and a lipid-binding C-terminal domain (residues 44–243). Here we propose a detailed model for the smallest discoidal HDL, consisting of two a...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-11, Vol.274 (45), p.31755-31758
Main Authors: Segrest, Jere P., Jones, Martin K., Klon, Anthony E., Sheldahl, Christopher J., Hellinger, Matthew, De Loof, Hans, Harvey, Stephen C.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Apolipoprotein A-I (apoA-I) is the principal protein of high density lipoprotein particles (HDL). ApoA-I contains a globular N-terminal domain (residues 1–43) and a lipid-binding C-terminal domain (residues 44–243). Here we propose a detailed model for the smallest discoidal HDL, consisting of two apoA-I molecules wrapped beltwise around a small patch of bilayer containing 160 lipid molecules. The C-terminal domain of each monomer is ringlike, a curved, planar amphipathic α helix with an average of 3.67 residues per turn, and with the hydrophobic surface curved toward the lipids. We have explored all possible geometries for forming the dimer of stacked rings, subject to the hypothesis that the optimal geometry will maximize intermolecular salt bridge interactions. The resulting model is an antiparallel arrangement with an alignment matching that of the (nonplanar) crystal structure of lipid-free apoA-I.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.45.31755