Loading…

STED microscopy with a supercontinuum laser source

We report on a straightforward yet powerful implementation of stimulated emission depletion (STED) fluorescence microscopy providing subdiffraction resolution in the far-field. Utilizing the same super-continuum pulsed laser source both for excitation and STED, this implementation of STED microscopy...

Full description

Saved in:
Bibliographic Details
Published in:Optics express 2008-06, Vol.16 (13), p.9614-9621
Main Authors: Wildanger, Dominik, Rittweger, Eva, Kastrup, Lars, Hell, Stefan W
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We report on a straightforward yet powerful implementation of stimulated emission depletion (STED) fluorescence microscopy providing subdiffraction resolution in the far-field. Utilizing the same super-continuum pulsed laser source both for excitation and STED, this implementation of STED microscopy avoids elaborate preparations of laser pulses and conveniently provides multicolor imaging. Operating at pulse repetition rates around 1 MHz, it also affords reduced photobleaching rates by allowing the fluorophore to relax from excitable metastable dark states involved in photodegradation. The imaging of dense nanoparticles and of the microtubular network of mammalian cells evidences a spatial resolution of 30-50 nm in the focal plane, i.e. by a factor of 8-9 beyond the diffraction barrier.
ISSN:1094-4087
1094-4087
DOI:10.1364/OE.16.009614