Loading…

Autocrine regulation of IL-12 receptor expression is independent of secondary IFN-gamma secretion and not restricted to T and NK cells

The biological response to IL-12 is mediated through specific binding to a high affinity receptor complex composed of at least two subunits (designated IL-12Rbeta1 and IL-12Rbeta2) that are expressed on NK cells and activated T cells. The selective loss of IL-12Rbeta2 expression during Th2 T cell di...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of immunology (1950) 1999-11, Vol.163 (10), p.5257-5264
Main Authors: Thibodeaux, D K, Hunter, S E, Waldburger, K E, Bliss, J L, Trepicchio, W L, Sypek, J P, Dunussi-Joannopoulos, K, Goldman, S J, Leonard, J P
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The biological response to IL-12 is mediated through specific binding to a high affinity receptor complex composed of at least two subunits (designated IL-12Rbeta1 and IL-12Rbeta2) that are expressed on NK cells and activated T cells. The selective loss of IL-12Rbeta2 expression during Th2 T cell differentiation suggests that regulation of this receptor component may govern IL-12 responsiveness. In murine assays, down-regulation of IL-12Rbeta2 expression can be prevented by treatment with IFN-gamma, indicating that receptor expression and hence IL-12 responsiveness may be regulated, at least in part, by the local cytokine milieu. In this study, we report that cellular expression of both IL-12Rbeta1 and beta2 mRNA is increased in the lymph nodes of naive mice following systemic administration of murine rIL-12 (rmIL-12). Changes in IL-12R mRNA were associated with increased IFN-gamma secretion following ex vivo activation of lymph node cells with rmIL-12, indicating the presence of a functional receptor complex. Expression of IL-12R mRNA was not restricted to lymph node T cells, and its autocrine regulation was independent of secondary IFN-gamma secretion. Data from fractionated lymph node cells as well as rmIL-12-treated B cell-deficient mice suggest that IL-12-responsive B cells may represent an alternative cellular source for IFN-gamma production. However, the strength of the biological response to rmIL-12 is not governed solely by receptor expression, as rmIL-12-induced IFN-gamma secretion from cultured lymph node cells is accessory cell dependent and can be partially blocked by inhibition of B7 costimulation.
ISSN:0022-1767
1550-6606
DOI:10.4049/jimmunol.163.10.5257