Loading…

Discrete-time stochastic modeling and simulation of biochemical networks

Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical...

Full description

Saved in:
Bibliographic Details
Published in:Computational biology and chemistry 2008-08, Vol.32 (4), p.292-297
Main Author: Sandmann, Werner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3
cites cdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3
container_end_page 297
container_issue 4
container_start_page 292
container_title Computational biology and chemistry
container_volume 32
creator Sandmann, Werner
description Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.
doi_str_mv 10.1016/j.compbiolchem.2008.03.018
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69264428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1476927108000376</els_id><sourcerecordid>69264428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0E4v0XUMSBW8LaeTncUHlKlbiAxM1y1ltwSeJiuyD-PalaAUdOu1rN7Gg-xk45ZBx4dT7P0PWL1roOX6nPBIDMIM-Ayy22z4u6Shshn7d_9prvsYMQ5gAiByh32R6XRdOUotxnd1c2oKdIabQ9JSE6fNUhWkx6Z6izw0uiB5ME2y87Ha0bEjdLxuhVskXdJQPFT-ffwhHbmeku0PFmHrKnm-vHyV06fbi9n1xOU8xrGdOyoFbrQnOQtSzbqpWmpKbUraBGmxyQzyQ0KEC0tUFOecFBo9G4OlGN-SE7W_9dePe-pBBVPzagrtMDuWVQVSOqohByFF6shehdCJ5mauFtr_2X4qBWHNVc_eWoVhwV5GrkOJpPNinLtifza92AGwVXawGNXT8seRXQ0oBkrCeMyjj7n5xvge6M-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69264428</pqid></control><display><type>article</type><title>Discrete-time stochastic modeling and simulation of biochemical networks</title><source>Elsevier</source><creator>Sandmann, Werner</creator><creatorcontrib>Sandmann, Werner</creatorcontrib><description>Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.</description><identifier>ISSN: 1476-9271</identifier><identifier>EISSN: 1476-928X</identifier><identifier>DOI: 10.1016/j.compbiolchem.2008.03.018</identifier><identifier>PMID: 18499525</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Biochemical networks ; Biochemical Phenomena ; Chemical master equation ; Computational Biology - methods ; Computer Simulation ; Discrete-time Markov chain ; Markov Chains ; Models, Biological ; Stochastic modeling ; Stochastic Processes ; Stochastic simulation ; Time Factors ; Uniformization</subject><ispartof>Computational biology and chemistry, 2008-08, Vol.32 (4), p.292-297</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</citedby><cites>FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18499525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandmann, Werner</creatorcontrib><title>Discrete-time stochastic modeling and simulation of biochemical networks</title><title>Computational biology and chemistry</title><addtitle>Comput Biol Chem</addtitle><description>Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.</description><subject>Algorithms</subject><subject>Biochemical networks</subject><subject>Biochemical Phenomena</subject><subject>Chemical master equation</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Discrete-time Markov chain</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Stochastic modeling</subject><subject>Stochastic Processes</subject><subject>Stochastic simulation</subject><subject>Time Factors</subject><subject>Uniformization</subject><issn>1476-9271</issn><issn>1476-928X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0E4v0XUMSBW8LaeTncUHlKlbiAxM1y1ltwSeJiuyD-PalaAUdOu1rN7Gg-xk45ZBx4dT7P0PWL1roOX6nPBIDMIM-Ayy22z4u6Shshn7d_9prvsYMQ5gAiByh32R6XRdOUotxnd1c2oKdIabQ9JSE6fNUhWkx6Z6izw0uiB5ME2y87Ha0bEjdLxuhVskXdJQPFT-ffwhHbmeku0PFmHrKnm-vHyV06fbi9n1xOU8xrGdOyoFbrQnOQtSzbqpWmpKbUraBGmxyQzyQ0KEC0tUFOecFBo9G4OlGN-SE7W_9dePe-pBBVPzagrtMDuWVQVSOqohByFF6shehdCJ5mauFtr_2X4qBWHNVc_eWoVhwV5GrkOJpPNinLtifza92AGwVXawGNXT8seRXQ0oBkrCeMyjj7n5xvge6M-Q</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Sandmann, Werner</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Discrete-time stochastic modeling and simulation of biochemical networks</title><author>Sandmann, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Biochemical networks</topic><topic>Biochemical Phenomena</topic><topic>Chemical master equation</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Discrete-time Markov chain</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Stochastic modeling</topic><topic>Stochastic Processes</topic><topic>Stochastic simulation</topic><topic>Time Factors</topic><topic>Uniformization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandmann, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computational biology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandmann, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-time stochastic modeling and simulation of biochemical networks</atitle><jtitle>Computational biology and chemistry</jtitle><addtitle>Comput Biol Chem</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>32</volume><issue>4</issue><spage>292</spage><epage>297</epage><pages>292-297</pages><issn>1476-9271</issn><eissn>1476-928X</eissn><abstract>Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18499525</pmid><doi>10.1016/j.compbiolchem.2008.03.018</doi><tpages>6</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1476-9271
ispartof Computational biology and chemistry, 2008-08, Vol.32 (4), p.292-297
issn 1476-9271
1476-928X
language eng
recordid cdi_proquest_miscellaneous_69264428
source Elsevier
subjects Algorithms
Biochemical networks
Biochemical Phenomena
Chemical master equation
Computational Biology - methods
Computer Simulation
Discrete-time Markov chain
Markov Chains
Models, Biological
Stochastic modeling
Stochastic Processes
Stochastic simulation
Time Factors
Uniformization
title Discrete-time stochastic modeling and simulation of biochemical networks
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-time%20stochastic%20modeling%20and%20simulation%20of%20biochemical%20networks&rft.jtitle=Computational%20biology%20and%20chemistry&rft.au=Sandmann,%20Werner&rft.date=2008-08-01&rft.volume=32&rft.issue=4&rft.spage=292&rft.epage=297&rft.pages=292-297&rft.issn=1476-9271&rft.eissn=1476-928X&rft_id=info:doi/10.1016/j.compbiolchem.2008.03.018&rft_dat=%3Cproquest_cross%3E69264428%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69264428&rft_id=info:pmid/18499525&rfr_iscdi=true