Loading…
Discrete-time stochastic modeling and simulation of biochemical networks
Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical...
Saved in:
Published in: | Computational biology and chemistry 2008-08, Vol.32 (4), p.292-297 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3 |
container_end_page | 297 |
container_issue | 4 |
container_start_page | 292 |
container_title | Computational biology and chemistry |
container_volume | 32 |
creator | Sandmann, Werner |
description | Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently. |
doi_str_mv | 10.1016/j.compbiolchem.2008.03.018 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69264428</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1476927108000376</els_id><sourcerecordid>69264428</sourcerecordid><originalsourceid>FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</originalsourceid><addsrcrecordid>eNqNkEtPwzAQhC0E4v0XUMSBW8LaeTncUHlKlbiAxM1y1ltwSeJiuyD-PalaAUdOu1rN7Gg-xk45ZBx4dT7P0PWL1roOX6nPBIDMIM-Ayy22z4u6Shshn7d_9prvsYMQ5gAiByh32R6XRdOUotxnd1c2oKdIabQ9JSE6fNUhWkx6Z6izw0uiB5ME2y87Ha0bEjdLxuhVskXdJQPFT-ffwhHbmeku0PFmHrKnm-vHyV06fbi9n1xOU8xrGdOyoFbrQnOQtSzbqpWmpKbUraBGmxyQzyQ0KEC0tUFOecFBo9G4OlGN-SE7W_9dePe-pBBVPzagrtMDuWVQVSOqohByFF6shehdCJ5mauFtr_2X4qBWHNVc_eWoVhwV5GrkOJpPNinLtifza92AGwVXawGNXT8seRXQ0oBkrCeMyjj7n5xvge6M-Q</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69264428</pqid></control><display><type>article</type><title>Discrete-time stochastic modeling and simulation of biochemical networks</title><source>Elsevier</source><creator>Sandmann, Werner</creator><creatorcontrib>Sandmann, Werner</creatorcontrib><description>Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.</description><identifier>ISSN: 1476-9271</identifier><identifier>EISSN: 1476-928X</identifier><identifier>DOI: 10.1016/j.compbiolchem.2008.03.018</identifier><identifier>PMID: 18499525</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Algorithms ; Biochemical networks ; Biochemical Phenomena ; Chemical master equation ; Computational Biology - methods ; Computer Simulation ; Discrete-time Markov chain ; Markov Chains ; Models, Biological ; Stochastic modeling ; Stochastic Processes ; Stochastic simulation ; Time Factors ; Uniformization</subject><ispartof>Computational biology and chemistry, 2008-08, Vol.32 (4), p.292-297</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</citedby><cites>FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,777,781,27905,27906</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18499525$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Sandmann, Werner</creatorcontrib><title>Discrete-time stochastic modeling and simulation of biochemical networks</title><title>Computational biology and chemistry</title><addtitle>Comput Biol Chem</addtitle><description>Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.</description><subject>Algorithms</subject><subject>Biochemical networks</subject><subject>Biochemical Phenomena</subject><subject>Chemical master equation</subject><subject>Computational Biology - methods</subject><subject>Computer Simulation</subject><subject>Discrete-time Markov chain</subject><subject>Markov Chains</subject><subject>Models, Biological</subject><subject>Stochastic modeling</subject><subject>Stochastic Processes</subject><subject>Stochastic simulation</subject><subject>Time Factors</subject><subject>Uniformization</subject><issn>1476-9271</issn><issn>1476-928X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkEtPwzAQhC0E4v0XUMSBW8LaeTncUHlKlbiAxM1y1ltwSeJiuyD-PalaAUdOu1rN7Gg-xk45ZBx4dT7P0PWL1roOX6nPBIDMIM-Ayy22z4u6Shshn7d_9prvsYMQ5gAiByh32R6XRdOUotxnd1c2oKdIabQ9JSE6fNUhWkx6Z6izw0uiB5ME2y87Ha0bEjdLxuhVskXdJQPFT-ffwhHbmeku0PFmHrKnm-vHyV06fbi9n1xOU8xrGdOyoFbrQnOQtSzbqpWmpKbUraBGmxyQzyQ0KEC0tUFOecFBo9G4OlGN-SE7W_9dePe-pBBVPzagrtMDuWVQVSOqohByFF6shehdCJ5mauFtr_2X4qBWHNVc_eWoVhwV5GrkOJpPNinLtifza92AGwVXawGNXT8seRXQ0oBkrCeMyjj7n5xvge6M-Q</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Sandmann, Werner</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Discrete-time stochastic modeling and simulation of biochemical networks</title><author>Sandmann, Werner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Biochemical networks</topic><topic>Biochemical Phenomena</topic><topic>Chemical master equation</topic><topic>Computational Biology - methods</topic><topic>Computer Simulation</topic><topic>Discrete-time Markov chain</topic><topic>Markov Chains</topic><topic>Models, Biological</topic><topic>Stochastic modeling</topic><topic>Stochastic Processes</topic><topic>Stochastic simulation</topic><topic>Time Factors</topic><topic>Uniformization</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Sandmann, Werner</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Computational biology and chemistry</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Sandmann, Werner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Discrete-time stochastic modeling and simulation of biochemical networks</atitle><jtitle>Computational biology and chemistry</jtitle><addtitle>Comput Biol Chem</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>32</volume><issue>4</issue><spage>292</spage><epage>297</epage><pages>292-297</pages><issn>1476-9271</issn><eissn>1476-928X</eissn><abstract>Since inherent randomness in chemically reacting systems is evident, stochastic modeling and simulation are exceedingly important for investigating complex biological networks. Within the most common stochastic approach a network is modeled by a continuous-time Markov chain governed by the chemical master equation. We show how the continuous-time Markov chain can be converted to a stochastically identical discrete-time Markov chain and obtain a discrete-time version of the chemical master equation. Simulating the discrete-time Markov chain is equivalent to the Gillespie algorithm but requires less effort in that it eliminates the generation of exponential random variables. Thus, exactness as possessed by the Gillespie algorithm is preserved while the simulation can be performed more efficiently.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18499525</pmid><doi>10.1016/j.compbiolchem.2008.03.018</doi><tpages>6</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1476-9271 |
ispartof | Computational biology and chemistry, 2008-08, Vol.32 (4), p.292-297 |
issn | 1476-9271 1476-928X |
language | eng |
recordid | cdi_proquest_miscellaneous_69264428 |
source | Elsevier |
subjects | Algorithms Biochemical networks Biochemical Phenomena Chemical master equation Computational Biology - methods Computer Simulation Discrete-time Markov chain Markov Chains Models, Biological Stochastic modeling Stochastic Processes Stochastic simulation Time Factors Uniformization |
title | Discrete-time stochastic modeling and simulation of biochemical networks |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-19T17%3A36%3A52IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Discrete-time%20stochastic%20modeling%20and%20simulation%20of%20biochemical%20networks&rft.jtitle=Computational%20biology%20and%20chemistry&rft.au=Sandmann,%20Werner&rft.date=2008-08-01&rft.volume=32&rft.issue=4&rft.spage=292&rft.epage=297&rft.pages=292-297&rft.issn=1476-9271&rft.eissn=1476-928X&rft_id=info:doi/10.1016/j.compbiolchem.2008.03.018&rft_dat=%3Cproquest_cross%3E69264428%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c378t-54ebaa4a108785b6b8d5e95ab2e9ad30c1f809c202b7dc1e3410acdacc202e7c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69264428&rft_id=info:pmid/18499525&rfr_iscdi=true |