Loading…
Effect of dGTP Concentration on Human and CHO Telomerase
Human telomerase produces a long ladder of six-base repeat additions to a primer, while CHO telomerase primarily adds only one or two repeat additions to a primer. Under the standard assay conditions, the concentration of dGTP is very low, so we investigated the effects of increasing dGTP concentrat...
Saved in:
Published in: | Biochemistry (Easton) 1999-11, Vol.38 (46), p.15325-15332 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Human telomerase produces a long ladder of six-base repeat additions to a primer, while CHO telomerase primarily adds only one or two repeat additions to a primer. Under the standard assay conditions, the concentration of dGTP is very low, so we investigated the effects of increasing dGTP concentration on human and CHO telomerase activities. Increasing dGTP concentration over a range of 1.5−50 μM caused the human telomerase to produce longer primer extension products until products were so large that no ladder pattern was apparent. Increasing dGTP concentration resulted in CHO telomerase producing one to eight repeat additions, though still not as many repeats as produced by human telomerase even under low dGTP conditions. CHO telomerase produced a six-base ladder pattern comparable to human telomerase only after raising the dGTP concentration to 500 μM under conditions in which the dATP concentration was low. Primer challenge experiments showed the human telomerase exhibited ∼100% processivity at both low and high concentrations of dGTP, and thus increasing dGTP concentration appeared to affect only the extension rate. In contrast, CHO telomerase exhibited low processivity under low concentrations of dGTP and increased processivity at higher dGTP concentrations. One explanation for the low processivity of CHO was found in CHO telomerase's inability to extend the GGTTAG permuted primer under nonprocessive conditions, while able to extend the other five permuted primers. Competition studies of different permuted primers indicated that the GGTTAG primer cannot interact with the nonprocessive CHO telomerase. A model is proposed for explaining the nonprocessive behavior of CHO telomerase. |
---|---|
ISSN: | 0006-2960 1520-4995 |
DOI: | 10.1021/bi991596+ |