Loading…

Inheritance of Histone H3 Methylation in Reprogramming of Somatic Nuclei Following Nuclear Transfer

Successful cloning requires reprogramming of epigenetic information of the somatic nucleus to an embryonic state. However, the molecular mechanisms regarding epigenetic reprogramming of the somatic chromatin are unclear. Herein, we transferred NIH3T3 cell nuclei into enucleated mouse oocytes and eva...

Full description

Saved in:
Bibliographic Details
Published in:Journal of Reproduction and Development 2008, Vol.54(3), pp.233-238
Main Authors: SHAO, Gen-Bao, DING, Hong-Mei, GONG, Ai-Hua, XIAO, De-Sheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Successful cloning requires reprogramming of epigenetic information of the somatic nucleus to an embryonic state. However, the molecular mechanisms regarding epigenetic reprogramming of the somatic chromatin are unclear. Herein, we transferred NIH3T3 cell nuclei into enucleated mouse oocytes and evaluated the histone H3 dimethyl-lysine 4 (H3K4me2) dynamics by immunocytochemistry. A low level of H3K4me2 in the somatic chromatin was maintained in pseudo-pronuclei. Unlike in vitro fertilized (IVF) embryos, the methylation level of nuclear transfer (NT) embryos was significantly increased at the 8-cell stage. NT embryos showed lower H3K4me2 intensity than IVF embryos at the 2-cell stage, which is when the mouse embryonic genome is activated. Moreover, the H3K4me2 signal was weak in the recloned embryos derived from single blastomeres of the NT embryos, whereas it was intense in those from IVF embryos. Two imprinted genes, U2afbp-rs and Xist, were abnormally transcribed in cloned embryos compared with IVF embryos, and this was partly correlated to the H3K4me2 level. Our results suggest that abnormal reprogramming of epigenetic markers such as histone acetylation and methylation may lead to dysregualtion of gene expression in cloned embryos.
ISSN:0916-8818
1348-4400
DOI:10.1262/jrd.19173