Loading…

Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase

The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, β-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was de...

Full description

Saved in:
Bibliographic Details
Published in:Transgenic research 2008-08, Vol.17 (4), p.573-585
Main Authors: Yu, Bianyun, Lydiate, Derek J, Young, Lester W, Schäfer, Ulrike A, Hannoufa, Abdelali
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13
cites cdi_FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13
container_end_page 585
container_issue 4
container_start_page 573
container_title Transgenic research
container_volume 17
creator Yu, Bianyun
Lydiate, Derek J
Young, Lester W
Schäfer, Ulrike A
Hannoufa, Abdelali
description The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, β-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two β rings such as β-carotene, zeaxanthin and violaxanthin, while the other introduces both β- and ε-rings in lycopene to form α-carotene and lutein. By reducing the expression of lycopene ε-cyclase (ε-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of β-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of ε-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. ε-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.
doi_str_mv 10.1007/s11248-007-9131-x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69293070</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69293070</sourcerecordid><originalsourceid>FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13</originalsourceid><addsrcrecordid>eNp9kEFv1DAQhS0EokvhB3ABCwlugRnbSewjVC0gVeIAPVtex9mmytqLJ1G7_x5HWVGJAyc_yd97M_MYe43wEQHaT4QolK6KrAxKrB6esA3WrayMbPRTtgHTiEprNGfsBdEdQHFp-ZydYatrbNt6w_xlvHXRD3HHp9vAvctpCjENHfcpFjXx1PMv2REN3vHoDjNxCqEjvj3yLt3HHHbz6KYlYDz6dAgx8HCgYUyR-6MfHYWX7FnvRgqvTu85u7m6_HXxrbr-8fX7xefryittpipop5VSEtwWlK-N9uh7o1Rv6rZpXNs1regUNCgDygbd1vcaCto1Xgf0KM_ZhzX3kNPvOdBk9wP5MI4uhjSTbYwwEloo4Lt_wLs051h2s0IUQtVGFAhXyOdElENvD3nYu3y0CHap367120Uu9duH4nlzCp63-9A9Ok59F-D9CXDk3djnpXv6ywmoQRlQhRMrR-Ur7kJ-3PB_09-upt4l63a5BN_8FIASwGA5DOUfN1Gm5A</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>223074592</pqid></control><display><type>article</type><title>Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase</title><source>Springer Nature</source><creator>Yu, Bianyun ; Lydiate, Derek J ; Young, Lester W ; Schäfer, Ulrike A ; Hannoufa, Abdelali</creator><creatorcontrib>Yu, Bianyun ; Lydiate, Derek J ; Young, Lester W ; Schäfer, Ulrike A ; Hannoufa, Abdelali</creatorcontrib><description>The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, β-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two β rings such as β-carotene, zeaxanthin and violaxanthin, while the other introduces both β- and ε-rings in lycopene to form α-carotene and lutein. By reducing the expression of lycopene ε-cyclase (ε-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of β-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of ε-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. ε-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.</description><identifier>ISSN: 0962-8819</identifier><identifier>EISSN: 1573-9368</identifier><identifier>DOI: 10.1007/s11248-007-9131-x</identifier><identifier>PMID: 17851775</identifier><language>eng</language><publisher>Dordrecht: Dordrecht : Springer Netherlands</publisher><subject>Animal Genetics and Genomics ; beta Carotene - metabolism ; Biological and medical sciences ; Biomedical and Life Sciences ; Biomedical Engineering/Biotechnology ; Biotechnology ; Blotting, Southern ; Brassica napus ; Brassica napus - genetics ; Brassica napus - metabolism ; carotenoids ; Carotenoids - metabolism ; Chromatography, Gas ; Chromatography, High Pressure Liquid ; Down-Regulation ; Fatty Acids - metabolism ; Fundamental and applied biological sciences. Psychology ; Gene Expression Regulation, Developmental ; Gene Expression Regulation, Plant ; Genetic Engineering ; Genetic technics ; Intramolecular Lyases - antagonists &amp; inhibitors ; Intramolecular Lyases - genetics ; Intramolecular Lyases - metabolism ; Life Sciences ; Lutein - metabolism ; Lycopene ε-cyclase ; Methods. Procedures. Technologies ; Molecular Medicine ; Original Paper ; Plant Genetics and Genomics ; Plants, Genetically Modified ; Reverse Transcriptase Polymerase Chain Reaction ; RNA, Messenger - genetics ; RNA, Messenger - metabolism ; RNA, Plant - genetics ; RNA, Plant - metabolism ; RNA, Small Interfering - pharmacology ; RNAi silencing ; seeds ; Seeds - genetics ; Seeds - metabolism ; Transgenic animals and transgenic plants ; Transgenics ; Xanthophylls - metabolism ; Zeaxanthins</subject><ispartof>Transgenic research, 2008-08, Vol.17 (4), p.573-585</ispartof><rights>Springer Science+Business Media B.V. 2007</rights><rights>2008 INIST-CNRS</rights><rights>Springer Science+Business Media B.V. 2008</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13</citedby><cites>FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20504904$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/17851775$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Yu, Bianyun</creatorcontrib><creatorcontrib>Lydiate, Derek J</creatorcontrib><creatorcontrib>Young, Lester W</creatorcontrib><creatorcontrib>Schäfer, Ulrike A</creatorcontrib><creatorcontrib>Hannoufa, Abdelali</creatorcontrib><title>Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase</title><title>Transgenic research</title><addtitle>Transgenic Res</addtitle><addtitle>Transgenic Res</addtitle><description>The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, β-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two β rings such as β-carotene, zeaxanthin and violaxanthin, while the other introduces both β- and ε-rings in lycopene to form α-carotene and lutein. By reducing the expression of lycopene ε-cyclase (ε-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of β-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of ε-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. ε-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.</description><subject>Animal Genetics and Genomics</subject><subject>beta Carotene - metabolism</subject><subject>Biological and medical sciences</subject><subject>Biomedical and Life Sciences</subject><subject>Biomedical Engineering/Biotechnology</subject><subject>Biotechnology</subject><subject>Blotting, Southern</subject><subject>Brassica napus</subject><subject>Brassica napus - genetics</subject><subject>Brassica napus - metabolism</subject><subject>carotenoids</subject><subject>Carotenoids - metabolism</subject><subject>Chromatography, Gas</subject><subject>Chromatography, High Pressure Liquid</subject><subject>Down-Regulation</subject><subject>Fatty Acids - metabolism</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>Gene Expression Regulation, Developmental</subject><subject>Gene Expression Regulation, Plant</subject><subject>Genetic Engineering</subject><subject>Genetic technics</subject><subject>Intramolecular Lyases - antagonists &amp; inhibitors</subject><subject>Intramolecular Lyases - genetics</subject><subject>Intramolecular Lyases - metabolism</subject><subject>Life Sciences</subject><subject>Lutein - metabolism</subject><subject>Lycopene ε-cyclase</subject><subject>Methods. Procedures. Technologies</subject><subject>Molecular Medicine</subject><subject>Original Paper</subject><subject>Plant Genetics and Genomics</subject><subject>Plants, Genetically Modified</subject><subject>Reverse Transcriptase Polymerase Chain Reaction</subject><subject>RNA, Messenger - genetics</subject><subject>RNA, Messenger - metabolism</subject><subject>RNA, Plant - genetics</subject><subject>RNA, Plant - metabolism</subject><subject>RNA, Small Interfering - pharmacology</subject><subject>RNAi silencing</subject><subject>seeds</subject><subject>Seeds - genetics</subject><subject>Seeds - metabolism</subject><subject>Transgenic animals and transgenic plants</subject><subject>Transgenics</subject><subject>Xanthophylls - metabolism</subject><subject>Zeaxanthins</subject><issn>0962-8819</issn><issn>1573-9368</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNp9kEFv1DAQhS0EokvhB3ABCwlugRnbSewjVC0gVeIAPVtex9mmytqLJ1G7_x5HWVGJAyc_yd97M_MYe43wEQHaT4QolK6KrAxKrB6esA3WrayMbPRTtgHTiEprNGfsBdEdQHFp-ZydYatrbNt6w_xlvHXRD3HHp9vAvctpCjENHfcpFjXx1PMv2REN3vHoDjNxCqEjvj3yLt3HHHbz6KYlYDz6dAgx8HCgYUyR-6MfHYWX7FnvRgqvTu85u7m6_HXxrbr-8fX7xefryittpipop5VSEtwWlK-N9uh7o1Rv6rZpXNs1regUNCgDygbd1vcaCto1Xgf0KM_ZhzX3kNPvOdBk9wP5MI4uhjSTbYwwEloo4Lt_wLs051h2s0IUQtVGFAhXyOdElENvD3nYu3y0CHap367120Uu9duH4nlzCp63-9A9Ok59F-D9CXDk3djnpXv6ywmoQRlQhRMrR-Ur7kJ-3PB_09-upt4l63a5BN_8FIASwGA5DOUfN1Gm5A</recordid><startdate>20080801</startdate><enddate>20080801</enddate><creator>Yu, Bianyun</creator><creator>Lydiate, Derek J</creator><creator>Young, Lester W</creator><creator>Schäfer, Ulrike A</creator><creator>Hannoufa, Abdelali</creator><general>Dordrecht : Springer Netherlands</general><general>Springer Netherlands</general><general>Springer</general><general>Springer Nature B.V</general><scope>FBQ</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7TK</scope><scope>7TM</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P64</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>RC3</scope><scope>7X8</scope></search><sort><creationdate>20080801</creationdate><title>Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase</title><author>Yu, Bianyun ; Lydiate, Derek J ; Young, Lester W ; Schäfer, Ulrike A ; Hannoufa, Abdelali</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Animal Genetics and Genomics</topic><topic>beta Carotene - metabolism</topic><topic>Biological and medical sciences</topic><topic>Biomedical and Life Sciences</topic><topic>Biomedical Engineering/Biotechnology</topic><topic>Biotechnology</topic><topic>Blotting, Southern</topic><topic>Brassica napus</topic><topic>Brassica napus - genetics</topic><topic>Brassica napus - metabolism</topic><topic>carotenoids</topic><topic>Carotenoids - metabolism</topic><topic>Chromatography, Gas</topic><topic>Chromatography, High Pressure Liquid</topic><topic>Down-Regulation</topic><topic>Fatty Acids - metabolism</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>Gene Expression Regulation, Developmental</topic><topic>Gene Expression Regulation, Plant</topic><topic>Genetic Engineering</topic><topic>Genetic technics</topic><topic>Intramolecular Lyases - antagonists &amp; inhibitors</topic><topic>Intramolecular Lyases - genetics</topic><topic>Intramolecular Lyases - metabolism</topic><topic>Life Sciences</topic><topic>Lutein - metabolism</topic><topic>Lycopene ε-cyclase</topic><topic>Methods. Procedures. Technologies</topic><topic>Molecular Medicine</topic><topic>Original Paper</topic><topic>Plant Genetics and Genomics</topic><topic>Plants, Genetically Modified</topic><topic>Reverse Transcriptase Polymerase Chain Reaction</topic><topic>RNA, Messenger - genetics</topic><topic>RNA, Messenger - metabolism</topic><topic>RNA, Plant - genetics</topic><topic>RNA, Plant - metabolism</topic><topic>RNA, Small Interfering - pharmacology</topic><topic>RNAi silencing</topic><topic>seeds</topic><topic>Seeds - genetics</topic><topic>Seeds - metabolism</topic><topic>Transgenic animals and transgenic plants</topic><topic>Transgenics</topic><topic>Xanthophylls - metabolism</topic><topic>Zeaxanthins</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Yu, Bianyun</creatorcontrib><creatorcontrib>Lydiate, Derek J</creatorcontrib><creatorcontrib>Young, Lester W</creatorcontrib><creatorcontrib>Schäfer, Ulrike A</creatorcontrib><creatorcontrib>Hannoufa, Abdelali</creatorcontrib><collection>AGRIS</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Neurosciences Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>ProQuest_Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Genetics Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Transgenic research</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Yu, Bianyun</au><au>Lydiate, Derek J</au><au>Young, Lester W</au><au>Schäfer, Ulrike A</au><au>Hannoufa, Abdelali</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase</atitle><jtitle>Transgenic research</jtitle><stitle>Transgenic Res</stitle><addtitle>Transgenic Res</addtitle><date>2008-08-01</date><risdate>2008</risdate><volume>17</volume><issue>4</issue><spage>573</spage><epage>585</epage><pages>573-585</pages><issn>0962-8819</issn><eissn>1573-9368</eissn><abstract>The accumulation of carotenoids in higher plants is regulated by the environment, tissue type and developmental stage. In Brassica napus leaves, β-carotene and lutein were the main carotenoids present while petals primarily accumulated lutein and violaxanthin. Carotenoid accumulation in seeds was developmentally regulated with the highest levels detected at 35-40 days post anthesis. The carotenoid biosynthesis pathway branches after the formation of lycopene. One branch forms carotenoids with two β rings such as β-carotene, zeaxanthin and violaxanthin, while the other introduces both β- and ε-rings in lycopene to form α-carotene and lutein. By reducing the expression of lycopene ε-cyclase (ε-CYC) using RNAi, we investigated altering carotenoid accumulation in seeds of B. napus. Transgenic seeds expressing this construct had increased levels of β-carotene, zeaxanthin, violaxanthin and, unexpectedly, lutein. The higher total carotenoid content resulting from reduction of ε-CYC expression in seeds suggests that this gene is a rate-limiting step in the carotenoid biosynthesis pathway. ε-CYC activity and carotenoid production may also be related to fatty acid biosynthesis in seeds as transgenic seeds showed an overall decrease in total fatty acid content and minor changes in the proportions of various fatty acids.</abstract><cop>Dordrecht</cop><pub>Dordrecht : Springer Netherlands</pub><pmid>17851775</pmid><doi>10.1007/s11248-007-9131-x</doi><tpages>13</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0962-8819
ispartof Transgenic research, 2008-08, Vol.17 (4), p.573-585
issn 0962-8819
1573-9368
language eng
recordid cdi_proquest_miscellaneous_69293070
source Springer Nature
subjects Animal Genetics and Genomics
beta Carotene - metabolism
Biological and medical sciences
Biomedical and Life Sciences
Biomedical Engineering/Biotechnology
Biotechnology
Blotting, Southern
Brassica napus
Brassica napus - genetics
Brassica napus - metabolism
carotenoids
Carotenoids - metabolism
Chromatography, Gas
Chromatography, High Pressure Liquid
Down-Regulation
Fatty Acids - metabolism
Fundamental and applied biological sciences. Psychology
Gene Expression Regulation, Developmental
Gene Expression Regulation, Plant
Genetic Engineering
Genetic technics
Intramolecular Lyases - antagonists & inhibitors
Intramolecular Lyases - genetics
Intramolecular Lyases - metabolism
Life Sciences
Lutein - metabolism
Lycopene ε-cyclase
Methods. Procedures. Technologies
Molecular Medicine
Original Paper
Plant Genetics and Genomics
Plants, Genetically Modified
Reverse Transcriptase Polymerase Chain Reaction
RNA, Messenger - genetics
RNA, Messenger - metabolism
RNA, Plant - genetics
RNA, Plant - metabolism
RNA, Small Interfering - pharmacology
RNAi silencing
seeds
Seeds - genetics
Seeds - metabolism
Transgenic animals and transgenic plants
Transgenics
Xanthophylls - metabolism
Zeaxanthins
title Enhancing the carotenoid content of Brassica napus seeds by downregulating lycopene epsilon cyclase
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-28T19%3A37%3A06IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Enhancing%20the%20carotenoid%20content%20of%20Brassica%20napus%20seeds%20by%20downregulating%20lycopene%20epsilon%20cyclase&rft.jtitle=Transgenic%20research&rft.au=Yu,%20Bianyun&rft.date=2008-08-01&rft.volume=17&rft.issue=4&rft.spage=573&rft.epage=585&rft.pages=573-585&rft.issn=0962-8819&rft.eissn=1573-9368&rft_id=info:doi/10.1007/s11248-007-9131-x&rft_dat=%3Cproquest_cross%3E69293070%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c489t-e8a844430ab04c598c1cf944f95766a7d672d40613e1361abcf80b04d6c8e1c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=223074592&rft_id=info:pmid/17851775&rfr_iscdi=true