Loading…

Changes in prostacyclin, thromboxane A2 and F2-isoprostanes, and influence of eicosapentaenoic acid and antiplatelet agents in patients with hypertension and hyperlipidemia

Prostacyclin (PGI2), thromboxane A2 (TXA2) and F2-isoprostanes, prostaglandin F2-like compounds, have wide and contrasting spectrum of biological activities and may influence blood pressure and atherogenesis. To investigate the dynamics of PGI2, TXA2 and F2-isoprostanes in patients with hypertension...

Full description

Saved in:
Bibliographic Details
Published in:Immunopharmacology 1999-10, Vol.44 (1-2), p.193-198
Main Authors: Yamada, Masaaki, Omata, Ken, Abe, Fumiaki, Ito, Sadayoshi, Keishi Abe
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Prostacyclin (PGI2), thromboxane A2 (TXA2) and F2-isoprostanes, prostaglandin F2-like compounds, have wide and contrasting spectrum of biological activities and may influence blood pressure and atherogenesis. To investigate the dynamics of PGI2, TXA2 and F2-isoprostanes in patients with hypertension and hyperlipidemia (HH group), we measured the major urinary metabolites of PGI2: 6-keto PGF1α (Keto) and 2,3-dinor-6-keto PGF1α (Dinor), those of TXA2: TXB2 and 11-dehydro TXB2 (Dehydro), and urinary 8-isoprostane (Iso) in 34 patients. Urinary excretion of Dinor was significantly lower in patients than in controls and that of Dehydro was significantly higher in patients than in controls. Keto, TXB2 and Iso were not significantly different between them. Antiplatelet agents decreased not only TXA2 metabolites but also PGI2 metabolites. Urinary C-peptide immunoreactivity was correlated with Dinor and Dehydro. After administration of eicosapentaenoic acid (EPA), total cholesterol (T-cho) and triglycerides (TG) significantly decreased. Although prostanoids did not show significant change, changes in T-cho were correlated with changes in Dinor and changes in Iso. These results suggest that PGI2 and TXA2 of systemic origin might be related to the pathophysiology of hypertension and hyperlipidemia and that the dynamics of PGI2, TXA2 and F2-isoprostanes might be related to not only blood pressure regulation but also lipid and glucose metabolism.
ISSN:0162-3109
DOI:10.1016/S0162-3109(99)00137-X