Loading…
A monitoring system for detecting aberrations in public health surveillance reports
Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying u...
Saved in:
Published in: | Statistics in medicine 1999-12, Vol.18 (23), p.3283-3298 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3 |
container_end_page | 3298 |
container_issue | 23 |
container_start_page | 3283 |
container_title | Statistics in medicine |
container_volume | 18 |
creator | Williamson, G. David Weatherby Hudson, Ginner |
description | Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States. |
doi_str_mv | 10.1002/(SICI)1097-0258(19991215)18:23<3283::AID-SIM316>3.0.CO;2-Z |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69366537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69366537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3</originalsourceid><addsrcrecordid>eNqNke9r1DAch4so7jb9F6QvRLYXPfOjSdpTBmfVrTB36E2FQ_iSpOkW7Y8zadX7723pOQV94atAePLw4UkQvMBojhEiT4_XeZafYJSKCBGWHOM0TTHB7AQnC0KfU5LQxWKZv4zW-RuK-Smdo3m2ekaizZ1gdvvsbjBDRIiIC8wOgkPvPyOEMSPifnCAEUeDEM-C9TKs28Z2rbPNdeh3vjN1WLYuLExndDdeSmWck51tGx_aJtz2qrI6vDGy6m5C37tvxlaVbLQJndm2rvMPgnulrLx5uD-PgvevX11l59HF6izPlheRjmPCI46V0IlkpMBCc6FVwVAqC0UkKxNV6jJOSqwo4ioRCZZCDTAylHDJY2xUSY-CJ5N369qvvfEd1NZrM44xbe-Bp5RzRsUAbiZQu9Z7Z0rYOltLtwOMYEwOMCaHsR2M7eBXcsAJEApjcoAhOUzJgQKCbAUENoP80X5Fr2pT_KGeGg_A4z0gvZZV6YZW1v_mCI3jJB2wTxP23VZm99fC_xj4z337m0EfTXo7fPGPW710X4ALKhh8vDyDy_MPb9nVuzUg-hNhb7tX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69366537</pqid></control><display><type>article</type><title>A monitoring system for detecting aberrations in public health surveillance reports</title><source>Wiley-Blackwell Read & Publish Collection</source><creator>Williamson, G. David ; Weatherby Hudson, Ginner</creator><creatorcontrib>Williamson, G. David ; Weatherby Hudson, Ginner</creatorcontrib><description>Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19991215)18:23<3283::AID-SIM316>3.0.CO;2-Z</identifier><identifier>PMID: 10602151</identifier><language>eng</language><publisher>Chichester, UK: John Wiley & Sons, Ltd</publisher><subject>Biological and medical sciences ; Centers for Disease Control and Prevention (U.S.) ; Communicable Disease Control ; Computerized, statistical medical data processing and models in biomedicine ; Epidemiologic Methods ; Hepatitis A - epidemiology ; Humans ; Medical sciences ; Medical statistics ; Models, Biological ; Population Surveillance - methods ; Public Health ; United States - epidemiology</subject><ispartof>Statistics in medicine, 1999-12, Vol.18 (23), p.3283-3298</ispartof><rights>Published in 1999 by John Wiley & Sons, Ltd.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1234489$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10602151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williamson, G. David</creatorcontrib><creatorcontrib>Weatherby Hudson, Ginner</creatorcontrib><title>A monitoring system for detecting aberrations in public health surveillance reports</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.</description><subject>Biological and medical sciences</subject><subject>Centers for Disease Control and Prevention (U.S.)</subject><subject>Communicable Disease Control</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Epidemiologic Methods</subject><subject>Hepatitis A - epidemiology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Models, Biological</subject><subject>Population Surveillance - methods</subject><subject>Public Health</subject><subject>United States - epidemiology</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNke9r1DAch4so7jb9F6QvRLYXPfOjSdpTBmfVrTB36E2FQ_iSpOkW7Y8zadX7723pOQV94atAePLw4UkQvMBojhEiT4_XeZafYJSKCBGWHOM0TTHB7AQnC0KfU5LQxWKZv4zW-RuK-Smdo3m2ekaizZ1gdvvsbjBDRIiIC8wOgkPvPyOEMSPifnCAEUeDEM-C9TKs28Z2rbPNdeh3vjN1WLYuLExndDdeSmWck51tGx_aJtz2qrI6vDGy6m5C37tvxlaVbLQJndm2rvMPgnulrLx5uD-PgvevX11l59HF6izPlheRjmPCI46V0IlkpMBCc6FVwVAqC0UkKxNV6jJOSqwo4ioRCZZCDTAylHDJY2xUSY-CJ5N369qvvfEd1NZrM44xbe-Bp5RzRsUAbiZQu9Z7Z0rYOltLtwOMYEwOMCaHsR2M7eBXcsAJEApjcoAhOUzJgQKCbAUENoP80X5Fr2pT_KGeGg_A4z0gvZZV6YZW1v_mCI3jJB2wTxP23VZm99fC_xj4z337m0EfTXo7fPGPW710X4ALKhh8vDyDy_MPb9nVuzUg-hNhb7tX</recordid><startdate>19991215</startdate><enddate>19991215</enddate><creator>Williamson, G. David</creator><creator>Weatherby Hudson, Ginner</creator><general>John Wiley & Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19991215</creationdate><title>A monitoring system for detecting aberrations in public health surveillance reports</title><author>Williamson, G. David ; Weatherby Hudson, Ginner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Centers for Disease Control and Prevention (U.S.)</topic><topic>Communicable Disease Control</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Epidemiologic Methods</topic><topic>Hepatitis A - epidemiology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Models, Biological</topic><topic>Population Surveillance - methods</topic><topic>Public Health</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, G. David</creatorcontrib><creatorcontrib>Weatherby Hudson, Ginner</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williamson, G. David</au><au>Weatherby Hudson, Ginner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A monitoring system for detecting aberrations in public health surveillance reports</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1999-12-15</date><risdate>1999</risdate><volume>18</volume><issue>23</issue><spage>3283</spage><epage>3298</epage><pages>3283-3298</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.</abstract><cop>Chichester, UK</cop><pub>John Wiley & Sons, Ltd</pub><pmid>10602151</pmid><doi>10.1002/(SICI)1097-0258(19991215)18:23<3283::AID-SIM316>3.0.CO;2-Z</doi><tpages>16</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0277-6715 |
ispartof | Statistics in medicine, 1999-12, Vol.18 (23), p.3283-3298 |
issn | 0277-6715 1097-0258 |
language | eng |
recordid | cdi_proquest_miscellaneous_69366537 |
source | Wiley-Blackwell Read & Publish Collection |
subjects | Biological and medical sciences Centers for Disease Control and Prevention (U.S.) Communicable Disease Control Computerized, statistical medical data processing and models in biomedicine Epidemiologic Methods Hepatitis A - epidemiology Humans Medical sciences Medical statistics Models, Biological Population Surveillance - methods Public Health United States - epidemiology |
title | A monitoring system for detecting aberrations in public health surveillance reports |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20monitoring%20system%20for%20detecting%20aberrations%20in%20public%20health%20surveillance%20reports&rft.jtitle=Statistics%20in%20medicine&rft.au=Williamson,%20G.%20David&rft.date=1999-12-15&rft.volume=18&rft.issue=23&rft.spage=3283&rft.epage=3298&rft.pages=3283-3298&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19991215)18:23%3C3283::AID-SIM316%3E3.0.CO;2-Z&rft_dat=%3Cproquest_cross%3E69366537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69366537&rft_id=info:pmid/10602151&rfr_iscdi=true |