Loading…

A monitoring system for detecting aberrations in public health surveillance reports

Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying u...

Full description

Saved in:
Bibliographic Details
Published in:Statistics in medicine 1999-12, Vol.18 (23), p.3283-3298
Main Authors: Williamson, G. David, Weatherby Hudson, Ginner
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3
container_end_page 3298
container_issue 23
container_start_page 3283
container_title Statistics in medicine
container_volume 18
creator Williamson, G. David
Weatherby Hudson, Ginner
description Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley & Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.
doi_str_mv 10.1002/(SICI)1097-0258(19991215)18:23<3283::AID-SIM316>3.0.CO;2-Z
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69366537</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69366537</sourcerecordid><originalsourceid>FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3</originalsourceid><addsrcrecordid>eNqNke9r1DAch4so7jb9F6QvRLYXPfOjSdpTBmfVrTB36E2FQ_iSpOkW7Y8zadX7723pOQV94atAePLw4UkQvMBojhEiT4_XeZafYJSKCBGWHOM0TTHB7AQnC0KfU5LQxWKZv4zW-RuK-Smdo3m2ekaizZ1gdvvsbjBDRIiIC8wOgkPvPyOEMSPifnCAEUeDEM-C9TKs28Z2rbPNdeh3vjN1WLYuLExndDdeSmWck51tGx_aJtz2qrI6vDGy6m5C37tvxlaVbLQJndm2rvMPgnulrLx5uD-PgvevX11l59HF6izPlheRjmPCI46V0IlkpMBCc6FVwVAqC0UkKxNV6jJOSqwo4ioRCZZCDTAylHDJY2xUSY-CJ5N369qvvfEd1NZrM44xbe-Bp5RzRsUAbiZQu9Z7Z0rYOltLtwOMYEwOMCaHsR2M7eBXcsAJEApjcoAhOUzJgQKCbAUENoP80X5Fr2pT_KGeGg_A4z0gvZZV6YZW1v_mCI3jJB2wTxP23VZm99fC_xj4z337m0EfTXo7fPGPW710X4ALKhh8vDyDy_MPb9nVuzUg-hNhb7tX</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69366537</pqid></control><display><type>article</type><title>A monitoring system for detecting aberrations in public health surveillance reports</title><source>Wiley-Blackwell Read &amp; Publish Collection</source><creator>Williamson, G. David ; Weatherby Hudson, Ginner</creator><creatorcontrib>Williamson, G. David ; Weatherby Hudson, Ginner</creatorcontrib><description>Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley &amp; Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.</description><identifier>ISSN: 0277-6715</identifier><identifier>EISSN: 1097-0258</identifier><identifier>DOI: 10.1002/(SICI)1097-0258(19991215)18:23&lt;3283::AID-SIM316&gt;3.0.CO;2-Z</identifier><identifier>PMID: 10602151</identifier><language>eng</language><publisher>Chichester, UK: John Wiley &amp; Sons, Ltd</publisher><subject>Biological and medical sciences ; Centers for Disease Control and Prevention (U.S.) ; Communicable Disease Control ; Computerized, statistical medical data processing and models in biomedicine ; Epidemiologic Methods ; Hepatitis A - epidemiology ; Humans ; Medical sciences ; Medical statistics ; Models, Biological ; Population Surveillance - methods ; Public Health ; United States - epidemiology</subject><ispartof>Statistics in medicine, 1999-12, Vol.18 (23), p.3283-3298</ispartof><rights>Published in 1999 by John Wiley &amp; Sons, Ltd.</rights><rights>2000 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>309,310,314,780,784,789,790,23930,23931,25140,27924,27925</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1234489$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10602151$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Williamson, G. David</creatorcontrib><creatorcontrib>Weatherby Hudson, Ginner</creatorcontrib><title>A monitoring system for detecting aberrations in public health surveillance reports</title><title>Statistics in medicine</title><addtitle>Statist. Med</addtitle><description>Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley &amp; Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.</description><subject>Biological and medical sciences</subject><subject>Centers for Disease Control and Prevention (U.S.)</subject><subject>Communicable Disease Control</subject><subject>Computerized, statistical medical data processing and models in biomedicine</subject><subject>Epidemiologic Methods</subject><subject>Hepatitis A - epidemiology</subject><subject>Humans</subject><subject>Medical sciences</subject><subject>Medical statistics</subject><subject>Models, Biological</subject><subject>Population Surveillance - methods</subject><subject>Public Health</subject><subject>United States - epidemiology</subject><issn>0277-6715</issn><issn>1097-0258</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNqNke9r1DAch4so7jb9F6QvRLYXPfOjSdpTBmfVrTB36E2FQ_iSpOkW7Y8zadX7723pOQV94atAePLw4UkQvMBojhEiT4_XeZafYJSKCBGWHOM0TTHB7AQnC0KfU5LQxWKZv4zW-RuK-Smdo3m2ekaizZ1gdvvsbjBDRIiIC8wOgkPvPyOEMSPifnCAEUeDEM-C9TKs28Z2rbPNdeh3vjN1WLYuLExndDdeSmWck51tGx_aJtz2qrI6vDGy6m5C37tvxlaVbLQJndm2rvMPgnulrLx5uD-PgvevX11l59HF6izPlheRjmPCI46V0IlkpMBCc6FVwVAqC0UkKxNV6jJOSqwo4ioRCZZCDTAylHDJY2xUSY-CJ5N369qvvfEd1NZrM44xbe-Bp5RzRsUAbiZQu9Z7Z0rYOltLtwOMYEwOMCaHsR2M7eBXcsAJEApjcoAhOUzJgQKCbAUENoP80X5Fr2pT_KGeGg_A4z0gvZZV6YZW1v_mCI3jJB2wTxP23VZm99fC_xj4z337m0EfTXo7fPGPW710X4ALKhh8vDyDy_MPb9nVuzUg-hNhb7tX</recordid><startdate>19991215</startdate><enddate>19991215</enddate><creator>Williamson, G. David</creator><creator>Weatherby Hudson, Ginner</creator><general>John Wiley &amp; Sons, Ltd</general><general>Wiley</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19991215</creationdate><title>A monitoring system for detecting aberrations in public health surveillance reports</title><author>Williamson, G. David ; Weatherby Hudson, Ginner</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Biological and medical sciences</topic><topic>Centers for Disease Control and Prevention (U.S.)</topic><topic>Communicable Disease Control</topic><topic>Computerized, statistical medical data processing and models in biomedicine</topic><topic>Epidemiologic Methods</topic><topic>Hepatitis A - epidemiology</topic><topic>Humans</topic><topic>Medical sciences</topic><topic>Medical statistics</topic><topic>Models, Biological</topic><topic>Population Surveillance - methods</topic><topic>Public Health</topic><topic>United States - epidemiology</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Williamson, G. David</creatorcontrib><creatorcontrib>Weatherby Hudson, Ginner</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Statistics in medicine</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Williamson, G. David</au><au>Weatherby Hudson, Ginner</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A monitoring system for detecting aberrations in public health surveillance reports</atitle><jtitle>Statistics in medicine</jtitle><addtitle>Statist. Med</addtitle><date>1999-12-15</date><risdate>1999</risdate><volume>18</volume><issue>23</issue><spage>3283</spage><epage>3298</epage><pages>3283-3298</pages><issn>0277-6715</issn><eissn>1097-0258</eissn><abstract>Routine analysis of public health surveillance data to detect departures from historical patterns of disease frequency is required to enable timely public health responses to decrease unnecessary morbidity and mortality. We describe a monitoring system incorporating statistical ‘flags’ identifying unusually large increases (or decreases) in disease reports compared to the number of cases expected. The two‐stage monitoring system consists of univariate Box–Jenkins models and subsequent tracking signals from several statistical process control charts. The analyses are illustrated on 1980–1995 national notifiable disease data reported weekly to the Centers for Disease Control and Prevention (CDC) by state health departments and published in CDC's Morbidity and Mortality Weekly Report. Published in 1999 by John Wiley &amp; Sons, Ltd. This article is a U.S. Government work and is in the public domain in the United States.</abstract><cop>Chichester, UK</cop><pub>John Wiley &amp; Sons, Ltd</pub><pmid>10602151</pmid><doi>10.1002/(SICI)1097-0258(19991215)18:23&lt;3283::AID-SIM316&gt;3.0.CO;2-Z</doi><tpages>16</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0277-6715
ispartof Statistics in medicine, 1999-12, Vol.18 (23), p.3283-3298
issn 0277-6715
1097-0258
language eng
recordid cdi_proquest_miscellaneous_69366537
source Wiley-Blackwell Read & Publish Collection
subjects Biological and medical sciences
Centers for Disease Control and Prevention (U.S.)
Communicable Disease Control
Computerized, statistical medical data processing and models in biomedicine
Epidemiologic Methods
Hepatitis A - epidemiology
Humans
Medical sciences
Medical statistics
Models, Biological
Population Surveillance - methods
Public Health
United States - epidemiology
title A monitoring system for detecting aberrations in public health surveillance reports
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-23T04%3A41%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20monitoring%20system%20for%20detecting%20aberrations%20in%20public%20health%20surveillance%20reports&rft.jtitle=Statistics%20in%20medicine&rft.au=Williamson,%20G.%20David&rft.date=1999-12-15&rft.volume=18&rft.issue=23&rft.spage=3283&rft.epage=3298&rft.pages=3283-3298&rft.issn=0277-6715&rft.eissn=1097-0258&rft_id=info:doi/10.1002/(SICI)1097-0258(19991215)18:23%3C3283::AID-SIM316%3E3.0.CO;2-Z&rft_dat=%3Cproquest_cross%3E69366537%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c4426-61b7c8a52d17c67cbd509adb2a5f8bfcf48f1b306b8781a7bc8a0e326a641ebf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69366537&rft_id=info:pmid/10602151&rfr_iscdi=true