Loading…

Expression, purification and structural characterization of recombinant hepcidin, an antimicrobial peptide identified in Japanese flounder, Paralichthys olivaceus

The cysteine-rich peptide hepcidin is an antimicrobial peptide and iron transport regulator that has been found in vertebrates including birds, fish and mammals. To elucidate the structure and biological function of fish hepcidin, which is difficult to produce synthetically, we have cloned several p...

Full description

Saved in:
Bibliographic Details
Published in:Protein expression and purification 2008-09, Vol.61 (1), p.36-44
Main Authors: Srinivasulu, B., Syvitski, R., Seo, J.-K., Mattatall, N.R., Knickle, L.C., Douglas, S.E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The cysteine-rich peptide hepcidin is an antimicrobial peptide and iron transport regulator that has been found in vertebrates including birds, fish and mammals. To elucidate the structure and biological function of fish hepcidin, which is difficult to produce synthetically, we have cloned several plasmid constructs encoding hepcidin from Japanese flounder, Paralichthys olivaceus, and tested expression of recombinant peptides, each with an N-terminal hexahistidine (6×His) tag, in inclusion bodies or the periplasmic space of Escherichia coli. Hepcidin expressed in inclusion bodies was reduced, and subsequently refolded using a dilution technique with a cysteine redox system. The oxidized His-hepcidin monomer was separated from protein multimers and mass spectrometry analysis showed that the peptide was of the predicted size and contained four disulfide bonds. Removal of the 6×His tag was attempted using enzymatic cleavage by Factor Xa and tobacco etch virus (TEV) protease or chemical cleavage by hydroxylamine. The Factor Xa cleavage was unsuccessful and hydroxylamine cleavage resulted in aggregation of cleaved peptide. TEV protease cleavage was successful but immediately resulted in hexamer formation despite varying reaction conditions (redox, non-redox, pH, temperature, target protein concentration, type of buffer). However, the recombinant His-hepcidin fusion peptide monomer showed considerable antimicrobial activity. NMR-based studies showed that hepcidin contained a rare vicinal disulfide linkage at the top of a loop structure and a short β-sheet structure encompassing residues 7–13 and 19–25 that is stabilized by three disulfide bonds.
ISSN:1046-5928
1096-0279
DOI:10.1016/j.pep.2008.05.012