Loading…

Biodegradable injectable polyurethanes: Synthesis and evaluation for orthopaedic applications

Abstract Biodegradable polyurethanes offer advantages in the design of injectable or preformed scaffolds for tissue engineering and other medical implant applications. We have developed two-part injectable prepolymer systems (prepolymer A and B) consisting of lactic acid and glycolic acid based poly...

Full description

Saved in:
Bibliographic Details
Published in:Biomaterials 2008-10, Vol.29 (28), p.3762-3770
Main Authors: Adhikari, Raju, Gunatillake, Pathiraja A, Griffiths, Ian, Tatai, Lisa, Wickramaratna, Malsha, Houshyar, Shadi, Moore, Tim, Mayadunne, Roshan T.M, Field, John, McGee, Margaret, Carbone, Tania
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Biodegradable polyurethanes offer advantages in the design of injectable or preformed scaffolds for tissue engineering and other medical implant applications. We have developed two-part injectable prepolymer systems (prepolymer A and B) consisting of lactic acid and glycolic acid based polyester star polyols, pentaerythritol (PE) and ethyl lysine diisocyanate (ELDI). This study reports on the formulation and properties of a series of cross linked polyurethanes specifically developed for orthopaedic applications. Prepolymer A was based on PE and ELDI. Polyester polyols (prepolymer B) were based on PE and dl -lactic acid (PEDLLA) or PE and glycolic acid (PEGA) with molecular weights 456 and 453, respectively. Several cross linked porous and non-porous polyurethanes were prepared by mixing and curing prepolymers A and B and their mechanical and thermal properties, in vitro (PBS/37 °C/pH 7.4) and in vivo (sheep bi-lateral) degradation evaluated. The effect of incorporating β-tricalcium phosphate (β-TCP, 5 microns, 10 wt.%) was also investigated. The cured polymers exhibited high compressive strength (100–190 MPa) and modulus (1600–2300 MPa). β-TCP improved mechanical properties in PEDLLA based polyurethanes and retarded the onset of in vitro and in vivo degradation. Sheep study results demonstrated that the polymers in both injectable and precured forms did not cause any surgical difficulties or any adverse tissue response. Evidence of new bone growth and the gradual degradation of the polymers were observed with increased implant time up to 6 months.
ISSN:0142-9612
1878-5905
DOI:10.1016/j.biomaterials.2008.06.021