Loading…

Dehydration-Associated Changes in the Ventral Glial Limitans Subjacent to the Supraoptic Nucleus Include a Reduction in the Extent of the Basal Lamina but Not Astrocytic Process Shrinkage

In these studies we have investigated factors that might account for two previous observations of the ventral glial limitans subjacent to the supraoptic nucleus (SON-VGL) of dehydrated rats: (1) a reversible reduction in the thickness of the SON-VGL, and (2) a reversible reorientation of VGL astrocy...

Full description

Saved in:
Bibliographic Details
Published in:Experimental neurology 1999-12, Vol.160 (2), p.425-432
Main Authors: Salm, A.K., Bobak, J.B.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In these studies we have investigated factors that might account for two previous observations of the ventral glial limitans subjacent to the supraoptic nucleus (SON-VGL) of dehydrated rats: (1) a reversible reduction in the thickness of the SON-VGL, and (2) a reversible reorientation of VGL astrocytes. Since components of the basal lamina influence both cell viability and polarity, we used electron microscopic sterology to determine the volume fraction of basal lamina in the SON-VGL. We further made extensive measurements of astrocytic process thickness to determine if cellular shrinkage is a factor in the thinning of the SON-VGL. While we found no evidence for changes in the thickness of astrocytic processes, there was a significant and reversible reduction in the extent of the basal lamina. These data suggest that the thinning of the VGL is due to complex biochemical events and is not merely an epiphenomenon of dehydration.
ISSN:0014-4886
1090-2430
DOI:10.1006/exnr.1999.7211