Loading…

Species–specific interactions between algal endosymbionts and coral hosts define their bleaching response to heat and light stress

The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties of juveni...

Full description

Saved in:
Bibliographic Details
Published in:Proceedings of the Royal Society. B, Biological sciences Biological sciences, 2008-10, Vol.275 (1648), p.2273-2282
Main Authors: Abrego, David, Ulstrup, Karin E, Willis, Bette L, van Oppen, Madeleine J.H
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The impacts of warming seas on the frequency and severity of bleaching events are well documented, but the potential for different Symbiodinium types to enhance the physiological tolerance of reef corals is not well understood. Here we compare the functionality and physiological properties of juvenile corals when experimentally infected with one of two homologous Symbiodinium types and exposed to combined heat and light stress. A suite of physiological indicators including chlorophyll a fluorescence, oxygen production and respiration, as well as pigment concentration consistently demonstrated lower metabolic costs and enhanced physiological tolerance of Acropora tenuis juveniles when hosting Symbiodinium type C1 compared with type D. In other studies, the same D-type has been shown to confer higher thermal tolerance than both C2 in adults and C1 in juveniles of the closely related species Acropora millepora. Our results challenge speculations that associations with type D are universally most robust to thermal stress. Although the heat tolerance of corals may be contingent on the Symbiodinium strain in hospite, our results highlight the complexity of interactions between symbiotic partners and a potential role for host factors in determining the physiological performance of reef corals.
ISSN:0962-8452
1471-2954
DOI:10.1098/rspb.2008.0180