Loading…
An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia
Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studie...
Saved in:
Published in: | Schizophrenia bulletin 1999-01, Vol.25 (4), p.789-799 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3 |
---|---|
cites | |
container_end_page | 799 |
container_issue | 4 |
container_start_page | 789 |
container_title | Schizophrenia bulletin |
container_volume | 25 |
creator | Campana, Arturo Duci, Alessandro Gambini, Orsola Scarone, Silvio |
description | Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance. |
doi_str_mv | 10.1093/oxfordjournals.schbul.a033419 |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69430394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>614414253</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3</originalsourceid><addsrcrecordid>eNp9kctu1DAUQC1ERacDv4AsBN2gDHb8SLJgMaoKrVRBJaZiaV07duM2k6R2Iph-PW4zqMCCja9lnfvwPQi9o2RFScU-9D9dH-qbfgodtHEVTaOndgWEMU6rZ2hBCy4yWhD6HC2IKGVWSMoP0VGMN4RQXsn8BTqkRMqi4OUCXa87vA6jd954aPEXO4XHMP7owy3eNDDiq2gjPt3ZbBPA3PruGl_akIbYQmcsHnt8XtsuVdjhSxh9ukb83Y8N_mYaf98PTbCdh5fowKV57at9XKKrT6ebk7Ps4uvn85P1RQa8EmPGwJWaUa6BusoYKJyWlGpOhct1WRojpQNrCUheMKbTY14zq7kgdWUL6dgSHc91h9DfTTaOauujsW0Lne2nqGTFGWHpWKI3_4C_d6rSwjjluWD_g_KcCZELKhL0cYZM6GMM1qkh-C2EnaJEPThTfztTszO1d5byX--bTHpr6z-yZ0kJeLsHIBpoXUiL9_GJy1OR8uFH72cMBlBD3BlIXk1ro5lCcjCqeK9VLhRXRVmxX7Nut8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614414253</pqid></control><display><type>article</type><title>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</title><source>PsycARTICLES</source><source>Oxford Journals Online</source><creator>Campana, Arturo ; Duci, Alessandro ; Gambini, Orsola ; Scarone, Silvio</creator><creatorcontrib>Campana, Arturo ; Duci, Alessandro ; Gambini, Orsola ; Scarone, Silvio</creatorcontrib><description>Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.</description><identifier>ISSN: 0586-7614</identifier><identifier>EISSN: 1745-1701</identifier><identifier>DOI: 10.1093/oxfordjournals.schbul.a033419</identifier><identifier>PMID: 10667748</identifier><identifier>CODEN: SCZBB3</identifier><language>eng</language><publisher>Oxford: National Institute of Mental Health</publisher><subject>Adult ; Adult and adolescent clinical studies ; Antipsychotic Agents - therapeutic use ; Biological and medical sciences ; Female ; Human ; Humans ; Male ; Medical sciences ; Neural Networks ; Neural Networks (Computer) ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Psychoses ; Random Allocation ; Saccades - physiology ; Schizophrenia ; Schizophrenia - diagnosis ; Schizophrenia - drug therapy ; Visual Tracking</subject><ispartof>Schizophrenia bulletin, 1999-01, Vol.25 (4), p.789-799</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Superintendent of Documents 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=1219384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10667748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campana, Arturo</creatorcontrib><creatorcontrib>Duci, Alessandro</creatorcontrib><creatorcontrib>Gambini, Orsola</creatorcontrib><creatorcontrib>Scarone, Silvio</creatorcontrib><title>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</title><title>Schizophrenia bulletin</title><addtitle>Schizophr Bull</addtitle><description>Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.</description><subject>Adult</subject><subject>Adult and adolescent clinical studies</subject><subject>Antipsychotic Agents - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Female</subject><subject>Human</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Neural Networks</subject><subject>Neural Networks (Computer)</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Psychoses</subject><subject>Random Allocation</subject><subject>Saccades - physiology</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnosis</subject><subject>Schizophrenia - drug therapy</subject><subject>Visual Tracking</subject><issn>0586-7614</issn><issn>1745-1701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUQC1ERacDv4AsBN2gDHb8SLJgMaoKrVRBJaZiaV07duM2k6R2Iph-PW4zqMCCja9lnfvwPQi9o2RFScU-9D9dH-qbfgodtHEVTaOndgWEMU6rZ2hBCy4yWhD6HC2IKGVWSMoP0VGMN4RQXsn8BTqkRMqi4OUCXa87vA6jd954aPEXO4XHMP7owy3eNDDiq2gjPt3ZbBPA3PruGl_akIbYQmcsHnt8XtsuVdjhSxh9ukb83Y8N_mYaf98PTbCdh5fowKV57at9XKKrT6ebk7Ps4uvn85P1RQa8EmPGwJWaUa6BusoYKJyWlGpOhct1WRojpQNrCUheMKbTY14zq7kgdWUL6dgSHc91h9DfTTaOauujsW0Lne2nqGTFGWHpWKI3_4C_d6rSwjjluWD_g_KcCZELKhL0cYZM6GMM1qkh-C2EnaJEPThTfztTszO1d5byX--bTHpr6z-yZ0kJeLsHIBpoXUiL9_GJy1OR8uFH72cMBlBD3BlIXk1ro5lCcjCqeK9VLhRXRVmxX7Nut8w</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Campana, Arturo</creator><creator>Duci, Alessandro</creator><creator>Gambini, Orsola</creator><creator>Scarone, Silvio</creator><general>National Institute of Mental Health</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>19990101</creationdate><title>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</title><author>Campana, Arturo ; Duci, Alessandro ; Gambini, Orsola ; Scarone, Silvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Adult and adolescent clinical studies</topic><topic>Antipsychotic Agents - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Female</topic><topic>Human</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Neural Networks</topic><topic>Neural Networks (Computer)</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Psychoses</topic><topic>Random Allocation</topic><topic>Saccades - physiology</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnosis</topic><topic>Schizophrenia - drug therapy</topic><topic>Visual Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campana, Arturo</creatorcontrib><creatorcontrib>Duci, Alessandro</creatorcontrib><creatorcontrib>Gambini, Orsola</creatorcontrib><creatorcontrib>Scarone, Silvio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Nursing & Allied Health Premium</collection><collection>PsycArticles (via ProQuest)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Schizophrenia bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campana, Arturo</au><au>Duci, Alessandro</au><au>Gambini, Orsola</au><au>Scarone, Silvio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</atitle><jtitle>Schizophrenia bulletin</jtitle><addtitle>Schizophr Bull</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>25</volume><issue>4</issue><spage>789</spage><epage>799</epage><pages>789-799</pages><issn>0586-7614</issn><eissn>1745-1701</eissn><coden>SCZBB3</coden><abstract>Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.</abstract><cop>Oxford</cop><pub>National Institute of Mental Health</pub><pmid>10667748</pmid><doi>10.1093/oxfordjournals.schbul.a033419</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0586-7614 |
ispartof | Schizophrenia bulletin, 1999-01, Vol.25 (4), p.789-799 |
issn | 0586-7614 1745-1701 |
language | eng |
recordid | cdi_proquest_miscellaneous_69430394 |
source | PsycARTICLES; Oxford Journals Online |
subjects | Adult Adult and adolescent clinical studies Antipsychotic Agents - therapeutic use Biological and medical sciences Female Human Humans Male Medical sciences Neural Networks Neural Networks (Computer) Psychology. Psychoanalysis. Psychiatry Psychopathology. Psychiatry Psychoses Random Allocation Saccades - physiology Schizophrenia Schizophrenia - diagnosis Schizophrenia - drug therapy Visual Tracking |
title | An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Neural%20Network%20That%20Uses%20Eye-Tracking%20Performance%20to%20Identify%20Patients%20With%20Schizophrenia&rft.jtitle=Schizophrenia%20bulletin&rft.au=Campana,%20Arturo&rft.date=1999-01-01&rft.volume=25&rft.issue=4&rft.spage=789&rft.epage=799&rft.pages=789-799&rft.issn=0586-7614&rft.eissn=1745-1701&rft.coden=SCZBB3&rft_id=info:doi/10.1093/oxfordjournals.schbul.a033419&rft_dat=%3Cproquest_cross%3E614414253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=614414253&rft_id=info:pmid/10667748&rfr_iscdi=true |