Loading…

An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia

Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studie...

Full description

Saved in:
Bibliographic Details
Published in:Schizophrenia bulletin 1999-01, Vol.25 (4), p.789-799
Main Authors: Campana, Arturo, Duci, Alessandro, Gambini, Orsola, Scarone, Silvio
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3
cites
container_end_page 799
container_issue 4
container_start_page 789
container_title Schizophrenia bulletin
container_volume 25
creator Campana, Arturo
Duci, Alessandro
Gambini, Orsola
Scarone, Silvio
description Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.
doi_str_mv 10.1093/oxfordjournals.schbul.a033419
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69430394</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>614414253</sourcerecordid><originalsourceid>FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3</originalsourceid><addsrcrecordid>eNp9kctu1DAUQC1ERacDv4AsBN2gDHb8SLJgMaoKrVRBJaZiaV07duM2k6R2Iph-PW4zqMCCja9lnfvwPQi9o2RFScU-9D9dH-qbfgodtHEVTaOndgWEMU6rZ2hBCy4yWhD6HC2IKGVWSMoP0VGMN4RQXsn8BTqkRMqi4OUCXa87vA6jd954aPEXO4XHMP7owy3eNDDiq2gjPt3ZbBPA3PruGl_akIbYQmcsHnt8XtsuVdjhSxh9ukb83Y8N_mYaf98PTbCdh5fowKV57at9XKKrT6ebk7Ps4uvn85P1RQa8EmPGwJWaUa6BusoYKJyWlGpOhct1WRojpQNrCUheMKbTY14zq7kgdWUL6dgSHc91h9DfTTaOauujsW0Lne2nqGTFGWHpWKI3_4C_d6rSwjjluWD_g_KcCZELKhL0cYZM6GMM1qkh-C2EnaJEPThTfztTszO1d5byX--bTHpr6z-yZ0kJeLsHIBpoXUiL9_GJy1OR8uFH72cMBlBD3BlIXk1ro5lCcjCqeK9VLhRXRVmxX7Nut8w</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>614414253</pqid></control><display><type>article</type><title>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</title><source>PsycARTICLES</source><source>Oxford Journals Online</source><creator>Campana, Arturo ; Duci, Alessandro ; Gambini, Orsola ; Scarone, Silvio</creator><creatorcontrib>Campana, Arturo ; Duci, Alessandro ; Gambini, Orsola ; Scarone, Silvio</creatorcontrib><description>Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.</description><identifier>ISSN: 0586-7614</identifier><identifier>EISSN: 1745-1701</identifier><identifier>DOI: 10.1093/oxfordjournals.schbul.a033419</identifier><identifier>PMID: 10667748</identifier><identifier>CODEN: SCZBB3</identifier><language>eng</language><publisher>Oxford: National Institute of Mental Health</publisher><subject>Adult ; Adult and adolescent clinical studies ; Antipsychotic Agents - therapeutic use ; Biological and medical sciences ; Female ; Human ; Humans ; Male ; Medical sciences ; Neural Networks ; Neural Networks (Computer) ; Psychology. Psychoanalysis. Psychiatry ; Psychopathology. Psychiatry ; Psychoses ; Random Allocation ; Saccades - physiology ; Schizophrenia ; Schizophrenia - diagnosis ; Schizophrenia - drug therapy ; Visual Tracking</subject><ispartof>Schizophrenia bulletin, 1999-01, Vol.25 (4), p.789-799</ispartof><rights>2000 INIST-CNRS</rights><rights>Copyright Superintendent of Documents 1999</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=1219384$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10667748$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Campana, Arturo</creatorcontrib><creatorcontrib>Duci, Alessandro</creatorcontrib><creatorcontrib>Gambini, Orsola</creatorcontrib><creatorcontrib>Scarone, Silvio</creatorcontrib><title>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</title><title>Schizophrenia bulletin</title><addtitle>Schizophr Bull</addtitle><description>Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.</description><subject>Adult</subject><subject>Adult and adolescent clinical studies</subject><subject>Antipsychotic Agents - therapeutic use</subject><subject>Biological and medical sciences</subject><subject>Female</subject><subject>Human</subject><subject>Humans</subject><subject>Male</subject><subject>Medical sciences</subject><subject>Neural Networks</subject><subject>Neural Networks (Computer)</subject><subject>Psychology. Psychoanalysis. Psychiatry</subject><subject>Psychopathology. Psychiatry</subject><subject>Psychoses</subject><subject>Random Allocation</subject><subject>Saccades - physiology</subject><subject>Schizophrenia</subject><subject>Schizophrenia - diagnosis</subject><subject>Schizophrenia - drug therapy</subject><subject>Visual Tracking</subject><issn>0586-7614</issn><issn>1745-1701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNp9kctu1DAUQC1ERacDv4AsBN2gDHb8SLJgMaoKrVRBJaZiaV07duM2k6R2Iph-PW4zqMCCja9lnfvwPQi9o2RFScU-9D9dH-qbfgodtHEVTaOndgWEMU6rZ2hBCy4yWhD6HC2IKGVWSMoP0VGMN4RQXsn8BTqkRMqi4OUCXa87vA6jd954aPEXO4XHMP7owy3eNDDiq2gjPt3ZbBPA3PruGl_akIbYQmcsHnt8XtsuVdjhSxh9ukb83Y8N_mYaf98PTbCdh5fowKV57at9XKKrT6ebk7Ps4uvn85P1RQa8EmPGwJWaUa6BusoYKJyWlGpOhct1WRojpQNrCUheMKbTY14zq7kgdWUL6dgSHc91h9DfTTaOauujsW0Lne2nqGTFGWHpWKI3_4C_d6rSwjjluWD_g_KcCZELKhL0cYZM6GMM1qkh-C2EnaJEPThTfztTszO1d5byX--bTHpr6z-yZ0kJeLsHIBpoXUiL9_GJy1OR8uFH72cMBlBD3BlIXk1ro5lCcjCqeK9VLhRXRVmxX7Nut8w</recordid><startdate>19990101</startdate><enddate>19990101</enddate><creator>Campana, Arturo</creator><creator>Duci, Alessandro</creator><creator>Gambini, Orsola</creator><creator>Scarone, Silvio</creator><general>National Institute of Mental Health</general><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>K9.</scope><scope>NAPCQ</scope><scope>7RZ</scope><scope>PSYQQ</scope><scope>7X8</scope></search><sort><creationdate>19990101</creationdate><title>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</title><author>Campana, Arturo ; Duci, Alessandro ; Gambini, Orsola ; Scarone, Silvio</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>Adult</topic><topic>Adult and adolescent clinical studies</topic><topic>Antipsychotic Agents - therapeutic use</topic><topic>Biological and medical sciences</topic><topic>Female</topic><topic>Human</topic><topic>Humans</topic><topic>Male</topic><topic>Medical sciences</topic><topic>Neural Networks</topic><topic>Neural Networks (Computer)</topic><topic>Psychology. Psychoanalysis. Psychiatry</topic><topic>Psychopathology. Psychiatry</topic><topic>Psychoses</topic><topic>Random Allocation</topic><topic>Saccades - physiology</topic><topic>Schizophrenia</topic><topic>Schizophrenia - diagnosis</topic><topic>Schizophrenia - drug therapy</topic><topic>Visual Tracking</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Campana, Arturo</creatorcontrib><creatorcontrib>Duci, Alessandro</creatorcontrib><creatorcontrib>Gambini, Orsola</creatorcontrib><creatorcontrib>Scarone, Silvio</creatorcontrib><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>PsycArticles (via ProQuest)</collection><collection>ProQuest One Psychology</collection><collection>MEDLINE - Academic</collection><jtitle>Schizophrenia bulletin</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Campana, Arturo</au><au>Duci, Alessandro</au><au>Gambini, Orsola</au><au>Scarone, Silvio</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia</atitle><jtitle>Schizophrenia bulletin</jtitle><addtitle>Schizophr Bull</addtitle><date>1999-01-01</date><risdate>1999</risdate><volume>25</volume><issue>4</issue><spage>789</spage><epage>799</epage><pages>789-799</pages><issn>0586-7614</issn><eissn>1745-1701</eissn><coden>SCZBB3</coden><abstract>Several researchers have underscored the importance of precise characterization of eye-tracking dysfunction (ETD) in patients with schizophrenia. This biological trait appears to be useful in estimating the probability of genetic recombination in an individual, so it may be helpful in linkage studies. This article describes a non-linear computational model for using ETD to identify schizophrenia. A back-propagation neural network (BPNN) was used to classify schizophrenia patients and normal control subjects on the basis of their eye-tracking performance. Better classification results were obtained with BPNN than with a linear computational model (discriminant analysis): a priori predictions were approximately 80 percent correct. These results suggest, first, that eye-tracking patterns can be useful in distinguishing patients with schizophrenia from a normal comparison group with an accuracy of approximately 80 percent. Second, parallel distributed processing networks are able to detect higher order nonlinear relationships among predictor quantitative measurements of eye-tracking performance.</abstract><cop>Oxford</cop><pub>National Institute of Mental Health</pub><pmid>10667748</pmid><doi>10.1093/oxfordjournals.schbul.a033419</doi><tpages>11</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 0586-7614
ispartof Schizophrenia bulletin, 1999-01, Vol.25 (4), p.789-799
issn 0586-7614
1745-1701
language eng
recordid cdi_proquest_miscellaneous_69430394
source PsycARTICLES; Oxford Journals Online
subjects Adult
Adult and adolescent clinical studies
Antipsychotic Agents - therapeutic use
Biological and medical sciences
Female
Human
Humans
Male
Medical sciences
Neural Networks
Neural Networks (Computer)
Psychology. Psychoanalysis. Psychiatry
Psychopathology. Psychiatry
Psychoses
Random Allocation
Saccades - physiology
Schizophrenia
Schizophrenia - diagnosis
Schizophrenia - drug therapy
Visual Tracking
title An Artificial Neural Network That Uses Eye-Tracking Performance to Identify Patients With Schizophrenia
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-01T10%3A23%3A14IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=An%20Artificial%20Neural%20Network%20That%20Uses%20Eye-Tracking%20Performance%20to%20Identify%20Patients%20With%20Schizophrenia&rft.jtitle=Schizophrenia%20bulletin&rft.au=Campana,%20Arturo&rft.date=1999-01-01&rft.volume=25&rft.issue=4&rft.spage=789&rft.epage=799&rft.pages=789-799&rft.issn=0586-7614&rft.eissn=1745-1701&rft.coden=SCZBB3&rft_id=info:doi/10.1093/oxfordjournals.schbul.a033419&rft_dat=%3Cproquest_cross%3E614414253%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a495t-3af8b314ba1f9cca7fb611b415f2b88cc66faee0a64733bf2b2d3eb450d9e76f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=614414253&rft_id=info:pmid/10667748&rfr_iscdi=true