Loading…
Capillary Absorption of Metal Nanodroplets by Single-Wall Carbon Nanotubes
We present a simple model that demonstrates the possibility of capillary absorption of nonwetting liquid nanoparticles by carbon nanotubes (CNTs) assisted by the action of the Laplace pressure due to the droplet surface tension. We test this model with molecular dynamics simulation and find excellen...
Saved in:
Published in: | Nano letters 2008-08, Vol.8 (8), p.2253-2257 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We present a simple model that demonstrates the possibility of capillary absorption of nonwetting liquid nanoparticles by carbon nanotubes (CNTs) assisted by the action of the Laplace pressure due to the droplet surface tension. We test this model with molecular dynamics simulation and find excellent agreement with the theory, which shows that for a given nanotube radius there is a critical size below which a metal droplet will be absorbed. The model also explains recent observations of capillary absorption of nonwetting Cu nanodroplets by carbon nanotubes. This finding has implications for our understanding of the growth of CNTs from metal catalyst particles and suggests new methods for fabricating composite metal−CNT materials. |
---|---|
ISSN: | 1530-6984 1530-6992 |
DOI: | 10.1021/nl080875s |