Loading…

Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein

Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of comp...

Full description

Saved in:
Bibliographic Details
Published in:Bioinformatics 2008-09, Vol.24 (17), p.1858-1864
Main Authors: Lara, James, Wohlhueter, Robert M., Dimitrova, Zoya, Khudyakov, Yury E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Request full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13
cites cdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13
container_end_page 1864
container_issue 17
container_start_page 1858
container_title Bioinformatics
container_volume 24
creator Lara, James
Wohlhueter, Robert M.
Dimitrova, Zoya
Khudyakov, Yury E.
description Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.
doi_str_mv 10.1093/bioinformatics/btn339
format article
fullrecord <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_69466509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn339</oup_id><sourcerecordid>1647892371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</originalsourceid><addsrcrecordid>eNqNkd1u1DAQhS1ERcvCI4AsJLgLteOfJJfVClrQtpX4E-LG8joOnW1ip7ZT6Avw3HibbRFccTWW_Z0zMz4IPaPkNSUNO1yDB9f5MOgEJh6uk2OseYAOKJekKIloHuYzk1XBa8L20eMYN4QIyjl_hPZpLcu6bMgB-nUUEnRgQPfY2SnclvTDh0uczfEYbAsmgXfYd1i7BN-tA4N1vruGdHMLaTzoTa7G3w3kXfaxIyQ_WgwOpwuLL-yYXxJEvMTXEKaIzz6y3MAnC-4J2ut0H-3TXV2gz2_ffFqeFKvz43fLo1VhhJCpqCllnRRVo9daVHkX3fC8Sml0LU1lqJSNIFJSbnlJWk46qylvK2NEy9pWU7ZAr2bf3PdqsjGpAaKxfa-d9VNUsuFSivy_C_TiH3Djp5DXioo2tazLklQZEjNkgo8x2E6NAQYdbhQlapuS-jslNaeUdc935tN6sO0f1S6WDLzcAToa3XdBOwPxntvGW9dky5GZ89P4372LWQIx2Z_3Ih0ulaxYJdTJ12_qy_vVh2O6PFOn7DfSP8KN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198682207</pqid></control><display><type>article</type><title>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</title><source>Open Access: Oxford University Press Open Journals</source><creator>Lara, James ; Wohlhueter, Robert M. ; Dimitrova, Zoya ; Khudyakov, Yury E.</creator><creatorcontrib>Lara, James ; Wohlhueter, Robert M. ; Dimitrova, Zoya ; Khudyakov, Yury E.</creatorcontrib><description>Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn339</identifier><identifier>PMID: 18628290</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Amino Acid Sequence ; Antigen-Antibody Complex - chemistry ; Antigen-Antibody Complex - immunology ; Antigen-Antibody Complex - ultrastructure ; Antigens - chemistry ; Antigens - immunology ; Antigens - ultrastructure ; Biological and medical sciences ; Epitope Mapping - methods ; Fundamental and applied biological sciences. Psychology ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Molecular Sequence Data ; Neural Networks (Computer) ; Pattern Recognition, Automated - methods ; Protein Conformation ; Sequence Analysis, Protein - methods ; Structure-Activity Relationship ; Viral Nonstructural Proteins - chemistry ; Viral Nonstructural Proteins - immunology ; Viral Nonstructural Proteins - ultrastructure</subject><ispartof>Bioinformatics, 2008-09, Vol.24 (17), p.1858-1864</ispartof><rights>Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2008 INIST-CNRS</rights><rights>Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</citedby><cites>FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btn339$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20598800$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18628290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lara, James</creatorcontrib><creatorcontrib>Wohlhueter, Robert M.</creatorcontrib><creatorcontrib>Dimitrova, Zoya</creatorcontrib><creatorcontrib>Khudyakov, Yury E.</creatorcontrib><title>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Antigen-Antibody Complex - chemistry</subject><subject>Antigen-Antibody Complex - immunology</subject><subject>Antigen-Antibody Complex - ultrastructure</subject><subject>Antigens - chemistry</subject><subject>Antigens - immunology</subject><subject>Antigens - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Epitope Mapping - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Molecular Sequence Data</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protein Conformation</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Structure-Activity Relationship</subject><subject>Viral Nonstructural Proteins - chemistry</subject><subject>Viral Nonstructural Proteins - immunology</subject><subject>Viral Nonstructural Proteins - ultrastructure</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkd1u1DAQhS1ERcvCI4AsJLgLteOfJJfVClrQtpX4E-LG8joOnW1ip7ZT6Avw3HibbRFccTWW_Z0zMz4IPaPkNSUNO1yDB9f5MOgEJh6uk2OseYAOKJekKIloHuYzk1XBa8L20eMYN4QIyjl_hPZpLcu6bMgB-nUUEnRgQPfY2SnclvTDh0uczfEYbAsmgXfYd1i7BN-tA4N1vruGdHMLaTzoTa7G3w3kXfaxIyQ_WgwOpwuLL-yYXxJEvMTXEKaIzz6y3MAnC-4J2ut0H-3TXV2gz2_ffFqeFKvz43fLo1VhhJCpqCllnRRVo9daVHkX3fC8Sml0LU1lqJSNIFJSbnlJWk46qylvK2NEy9pWU7ZAr2bf3PdqsjGpAaKxfa-d9VNUsuFSivy_C_TiH3Djp5DXioo2tazLklQZEjNkgo8x2E6NAQYdbhQlapuS-jslNaeUdc935tN6sO0f1S6WDLzcAToa3XdBOwPxntvGW9dky5GZ89P4372LWQIx2Z_3Ih0ulaxYJdTJ12_qy_vVh2O6PFOn7DfSP8KN</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Lara, James</creator><creator>Wohlhueter, Robert M.</creator><creator>Dimitrova, Zoya</creator><creator>Khudyakov, Yury E.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</title><author>Lara, James ; Wohlhueter, Robert M. ; Dimitrova, Zoya ; Khudyakov, Yury E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Antigen-Antibody Complex - chemistry</topic><topic>Antigen-Antibody Complex - immunology</topic><topic>Antigen-Antibody Complex - ultrastructure</topic><topic>Antigens - chemistry</topic><topic>Antigens - immunology</topic><topic>Antigens - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Epitope Mapping - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Molecular Sequence Data</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protein Conformation</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Structure-Activity Relationship</topic><topic>Viral Nonstructural Proteins - chemistry</topic><topic>Viral Nonstructural Proteins - immunology</topic><topic>Viral Nonstructural Proteins - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara, James</creatorcontrib><creatorcontrib>Wohlhueter, Robert M.</creatorcontrib><creatorcontrib>Dimitrova, Zoya</creatorcontrib><creatorcontrib>Khudyakov, Yury E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology &amp; Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lara, James</au><au>Wohlhueter, Robert M.</au><au>Dimitrova, Zoya</au><au>Khudyakov, Yury E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>24</volume><issue>17</issue><spage>1858</spage><epage>1864</epage><pages>1858-1864</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18628290</pmid><doi>10.1093/bioinformatics/btn339</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext_linktorsrc
identifier ISSN: 1367-4803
ispartof Bioinformatics, 2008-09, Vol.24 (17), p.1858-1864
issn 1367-4803
1460-2059
1367-4811
language eng
recordid cdi_proquest_miscellaneous_69466509
source Open Access: Oxford University Press Open Journals
subjects Algorithms
Amino Acid Sequence
Antigen-Antibody Complex - chemistry
Antigen-Antibody Complex - immunology
Antigen-Antibody Complex - ultrastructure
Antigens - chemistry
Antigens - immunology
Antigens - ultrastructure
Biological and medical sciences
Epitope Mapping - methods
Fundamental and applied biological sciences. Psychology
General aspects
Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)
Molecular Sequence Data
Neural Networks (Computer)
Pattern Recognition, Automated - methods
Protein Conformation
Sequence Analysis, Protein - methods
Structure-Activity Relationship
Viral Nonstructural Proteins - chemistry
Viral Nonstructural Proteins - immunology
Viral Nonstructural Proteins - ultrastructure
title Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20prediction%20of%20antigenic%20activity%20for%20a%20major%20conformational%20epitope%20in%20the%20hepatitis%20C%20virus%20NS3%20protein&rft.jtitle=Bioinformatics&rft.au=Lara,%20James&rft.date=2008-09-01&rft.volume=24&rft.issue=17&rft.spage=1858&rft.epage=1864&rft.pages=1858-1864&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn339&rft_dat=%3Cproquest_TOX%3E1647892371%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198682207&rft_id=info:pmid/18628290&rft_oup_id=10.1093/bioinformatics/btn339&rfr_iscdi=true