Loading…
Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein
Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of comp...
Saved in:
Published in: | Bioinformatics 2008-09, Vol.24 (17), p.1858-1864 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Request full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13 |
---|---|
cites | cdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13 |
container_end_page | 1864 |
container_issue | 17 |
container_start_page | 1858 |
container_title | Bioinformatics |
container_volume | 24 |
creator | Lara, James Wohlhueter, Robert M. Dimitrova, Zoya Khudyakov, Yury E. |
description | Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online. |
doi_str_mv | 10.1093/bioinformatics/btn339 |
format | article |
fullrecord | <record><control><sourceid>proquest_TOX</sourceid><recordid>TN_cdi_proquest_miscellaneous_69466509</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><oup_id>10.1093/bioinformatics/btn339</oup_id><sourcerecordid>1647892371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</originalsourceid><addsrcrecordid>eNqNkd1u1DAQhS1ERcvCI4AsJLgLteOfJJfVClrQtpX4E-LG8joOnW1ip7ZT6Avw3HibbRFccTWW_Z0zMz4IPaPkNSUNO1yDB9f5MOgEJh6uk2OseYAOKJekKIloHuYzk1XBa8L20eMYN4QIyjl_hPZpLcu6bMgB-nUUEnRgQPfY2SnclvTDh0uczfEYbAsmgXfYd1i7BN-tA4N1vruGdHMLaTzoTa7G3w3kXfaxIyQ_WgwOpwuLL-yYXxJEvMTXEKaIzz6y3MAnC-4J2ut0H-3TXV2gz2_ffFqeFKvz43fLo1VhhJCpqCllnRRVo9daVHkX3fC8Sml0LU1lqJSNIFJSbnlJWk46qylvK2NEy9pWU7ZAr2bf3PdqsjGpAaKxfa-d9VNUsuFSivy_C_TiH3Djp5DXioo2tazLklQZEjNkgo8x2E6NAQYdbhQlapuS-jslNaeUdc935tN6sO0f1S6WDLzcAToa3XdBOwPxntvGW9dky5GZ89P4372LWQIx2Z_3Ih0ulaxYJdTJ12_qy_vVh2O6PFOn7DfSP8KN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>198682207</pqid></control><display><type>article</type><title>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</title><source>Open Access: Oxford University Press Open Journals</source><creator>Lara, James ; Wohlhueter, Robert M. ; Dimitrova, Zoya ; Khudyakov, Yury E.</creator><creatorcontrib>Lara, James ; Wohlhueter, Robert M. ; Dimitrova, Zoya ; Khudyakov, Yury E.</creatorcontrib><description>Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.</description><identifier>ISSN: 1367-4803</identifier><identifier>EISSN: 1460-2059</identifier><identifier>EISSN: 1367-4811</identifier><identifier>DOI: 10.1093/bioinformatics/btn339</identifier><identifier>PMID: 18628290</identifier><identifier>CODEN: BOINFP</identifier><language>eng</language><publisher>Oxford: Oxford University Press</publisher><subject>Algorithms ; Amino Acid Sequence ; Antigen-Antibody Complex - chemistry ; Antigen-Antibody Complex - immunology ; Antigen-Antibody Complex - ultrastructure ; Antigens - chemistry ; Antigens - immunology ; Antigens - ultrastructure ; Biological and medical sciences ; Epitope Mapping - methods ; Fundamental and applied biological sciences. Psychology ; General aspects ; Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) ; Molecular Sequence Data ; Neural Networks (Computer) ; Pattern Recognition, Automated - methods ; Protein Conformation ; Sequence Analysis, Protein - methods ; Structure-Activity Relationship ; Viral Nonstructural Proteins - chemistry ; Viral Nonstructural Proteins - immunology ; Viral Nonstructural Proteins - ultrastructure</subject><ispartof>Bioinformatics, 2008-09, Vol.24 (17), p.1858-1864</ispartof><rights>Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org 2008</rights><rights>2008 INIST-CNRS</rights><rights>Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oxfordjournals.org</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</citedby><cites>FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,1603,27923,27924</link.rule.ids><linktorsrc>$$Uhttps://dx.doi.org/10.1093/bioinformatics/btn339$$EView_record_in_Oxford_University_Press$$FView_record_in_$$GOxford_University_Press</linktorsrc><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=20598800$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18628290$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lara, James</creatorcontrib><creatorcontrib>Wohlhueter, Robert M.</creatorcontrib><creatorcontrib>Dimitrova, Zoya</creatorcontrib><creatorcontrib>Khudyakov, Yury E.</creatorcontrib><title>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</title><title>Bioinformatics</title><addtitle>Bioinformatics</addtitle><description>Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.</description><subject>Algorithms</subject><subject>Amino Acid Sequence</subject><subject>Antigen-Antibody Complex - chemistry</subject><subject>Antigen-Antibody Complex - immunology</subject><subject>Antigen-Antibody Complex - ultrastructure</subject><subject>Antigens - chemistry</subject><subject>Antigens - immunology</subject><subject>Antigens - ultrastructure</subject><subject>Biological and medical sciences</subject><subject>Epitope Mapping - methods</subject><subject>Fundamental and applied biological sciences. Psychology</subject><subject>General aspects</subject><subject>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</subject><subject>Molecular Sequence Data</subject><subject>Neural Networks (Computer)</subject><subject>Pattern Recognition, Automated - methods</subject><subject>Protein Conformation</subject><subject>Sequence Analysis, Protein - methods</subject><subject>Structure-Activity Relationship</subject><subject>Viral Nonstructural Proteins - chemistry</subject><subject>Viral Nonstructural Proteins - immunology</subject><subject>Viral Nonstructural Proteins - ultrastructure</subject><issn>1367-4803</issn><issn>1460-2059</issn><issn>1367-4811</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqNkd1u1DAQhS1ERcvCI4AsJLgLteOfJJfVClrQtpX4E-LG8joOnW1ip7ZT6Avw3HibbRFccTWW_Z0zMz4IPaPkNSUNO1yDB9f5MOgEJh6uk2OseYAOKJekKIloHuYzk1XBa8L20eMYN4QIyjl_hPZpLcu6bMgB-nUUEnRgQPfY2SnclvTDh0uczfEYbAsmgXfYd1i7BN-tA4N1vruGdHMLaTzoTa7G3w3kXfaxIyQ_WgwOpwuLL-yYXxJEvMTXEKaIzz6y3MAnC-4J2ut0H-3TXV2gz2_ffFqeFKvz43fLo1VhhJCpqCllnRRVo9daVHkX3fC8Sml0LU1lqJSNIFJSbnlJWk46qylvK2NEy9pWU7ZAr2bf3PdqsjGpAaKxfa-d9VNUsuFSivy_C_TiH3Djp5DXioo2tazLklQZEjNkgo8x2E6NAQYdbhQlapuS-jslNaeUdc935tN6sO0f1S6WDLzcAToa3XdBOwPxntvGW9dky5GZ89P4372LWQIx2Z_3Ih0ulaxYJdTJ12_qy_vVh2O6PFOn7DfSP8KN</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Lara, James</creator><creator>Wohlhueter, Robert M.</creator><creator>Dimitrova, Zoya</creator><creator>Khudyakov, Yury E.</creator><general>Oxford University Press</general><general>Oxford Publishing Limited (England)</general><scope>BSCLL</scope><scope>IQODW</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7TM</scope><scope>7TO</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>F28</scope><scope>FR3</scope><scope>H8D</scope><scope>H8G</scope><scope>H94</scope><scope>JG9</scope><scope>JQ2</scope><scope>K9.</scope><scope>KR7</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</title><author>Lara, James ; Wohlhueter, Robert M. ; Dimitrova, Zoya ; Khudyakov, Yury E.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Algorithms</topic><topic>Amino Acid Sequence</topic><topic>Antigen-Antibody Complex - chemistry</topic><topic>Antigen-Antibody Complex - immunology</topic><topic>Antigen-Antibody Complex - ultrastructure</topic><topic>Antigens - chemistry</topic><topic>Antigens - immunology</topic><topic>Antigens - ultrastructure</topic><topic>Biological and medical sciences</topic><topic>Epitope Mapping - methods</topic><topic>Fundamental and applied biological sciences. Psychology</topic><topic>General aspects</topic><topic>Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects)</topic><topic>Molecular Sequence Data</topic><topic>Neural Networks (Computer)</topic><topic>Pattern Recognition, Automated - methods</topic><topic>Protein Conformation</topic><topic>Sequence Analysis, Protein - methods</topic><topic>Structure-Activity Relationship</topic><topic>Viral Nonstructural Proteins - chemistry</topic><topic>Viral Nonstructural Proteins - immunology</topic><topic>Viral Nonstructural Proteins - ultrastructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lara, James</creatorcontrib><creatorcontrib>Wohlhueter, Robert M.</creatorcontrib><creatorcontrib>Dimitrova, Zoya</creatorcontrib><creatorcontrib>Khudyakov, Yury E.</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext_linktorsrc</fulltext></delivery><addata><au>Lara, James</au><au>Wohlhueter, Robert M.</au><au>Dimitrova, Zoya</au><au>Khudyakov, Yury E.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein</atitle><jtitle>Bioinformatics</jtitle><addtitle>Bioinformatics</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>24</volume><issue>17</issue><spage>1858</spage><epage>1864</epage><pages>1858-1864</pages><issn>1367-4803</issn><eissn>1460-2059</eissn><eissn>1367-4811</eissn><coden>BOINFP</coden><abstract>Motivation: Insufficient knowledge of general principles for accurate quantitative inference of biological properties from sequences is a major obstacle in the rationale design of proteins with predetermined activities. Due to this deficiency, protein engineering frequently relies on the use of computational approaches focused on the identification of quantitative structure–activity relationship (SAR) for each specific task. In the current article, a computational model was developed to define SAR for a major conformational antigenic epitope of the hepatitis C virus (HCV) non-structural protein 3 (NS3) in order to facilitate a rationale design of HCV antigens with improved diagnostically relevant properties. Results: We present an artificial neural network (ANN) model that connects changes in the antigenic properties and structure of HCV NS3 recombinant proteins representing all 6 HCV genotypes. The ANN performed quantitative predictions of the enzyme immunoassay (EIA) Signal/Cutoff (S/Co) profiles from sequence information alone with 89.8% accuracy. Amino acid positions and physicochemical factors strongly associated with the HCV NS3 antigenic properties were identified. The positions most significantly contributing to the model were mapped on the NS3 3D structure. The location of these positions validates the major associations found by the ANN model between antigenicity and structure of the HCV NS3 proteins. Availability: Matlab code is available at the following URL address: http://bio-ai.myeweb.net/box_widget.html Contact: jlara@cdc.gov; yek0@cdc.gov Supplementary information: Supplementary data are available at Bioinformatics online.</abstract><cop>Oxford</cop><pub>Oxford University Press</pub><pmid>18628290</pmid><doi>10.1093/bioinformatics/btn339</doi><tpages>7</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext_linktorsrc |
identifier | ISSN: 1367-4803 |
ispartof | Bioinformatics, 2008-09, Vol.24 (17), p.1858-1864 |
issn | 1367-4803 1460-2059 1367-4811 |
language | eng |
recordid | cdi_proquest_miscellaneous_69466509 |
source | Open Access: Oxford University Press Open Journals |
subjects | Algorithms Amino Acid Sequence Antigen-Antibody Complex - chemistry Antigen-Antibody Complex - immunology Antigen-Antibody Complex - ultrastructure Antigens - chemistry Antigens - immunology Antigens - ultrastructure Biological and medical sciences Epitope Mapping - methods Fundamental and applied biological sciences. Psychology General aspects Mathematics in biology. Statistical analysis. Models. Metrology. Data processing in biology (general aspects) Molecular Sequence Data Neural Networks (Computer) Pattern Recognition, Automated - methods Protein Conformation Sequence Analysis, Protein - methods Structure-Activity Relationship Viral Nonstructural Proteins - chemistry Viral Nonstructural Proteins - immunology Viral Nonstructural Proteins - ultrastructure |
title | Artificial neural network for prediction of antigenic activity for a major conformational epitope in the hepatitis C virus NS3 protein |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T05%3A18%3A21IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_TOX&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20for%20prediction%20of%20antigenic%20activity%20for%20a%20major%20conformational%20epitope%20in%20the%20hepatitis%20C%20virus%20NS3%20protein&rft.jtitle=Bioinformatics&rft.au=Lara,%20James&rft.date=2008-09-01&rft.volume=24&rft.issue=17&rft.spage=1858&rft.epage=1864&rft.pages=1858-1864&rft.issn=1367-4803&rft.eissn=1460-2059&rft.coden=BOINFP&rft_id=info:doi/10.1093/bioinformatics/btn339&rft_dat=%3Cproquest_TOX%3E1647892371%3C/proquest_TOX%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c556t-8113f6579aba57444a948622ca86c7c1669506614e420d40fea14d7cc5d3dda13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=198682207&rft_id=info:pmid/18628290&rft_oup_id=10.1093/bioinformatics/btn339&rfr_iscdi=true |