Loading…

The Ionic Work Function and its Role in Estimating Absolute Electrode Potentials

The experimental determination of the ionic work function is briefly described. Data for the proton, alkali metal ions, and halide ions in water, originally published by Randles (Randles, J. E. B. Trans Faraday Soc. 1956, 52, 1573) are recalculated on the basis of up-to-date thermodynamic tables. Th...

Full description

Saved in:
Bibliographic Details
Published in:Langmuir 2008-09, Vol.24 (17), p.9868-9875
Main Author: Fawcett, W. Ronald
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33
cites cdi_FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33
container_end_page 9875
container_issue 17
container_start_page 9868
container_title Langmuir
container_volume 24
creator Fawcett, W. Ronald
description The experimental determination of the ionic work function is briefly described. Data for the proton, alkali metal ions, and halide ions in water, originally published by Randles (Randles, J. E. B. Trans Faraday Soc. 1956, 52, 1573) are recalculated on the basis of up-to-date thermodynamic tables. These calculations are extended to data for the same ions in four nonaqueous solvents, namely, methanol, ethanol, acetonitrile, and dimethyl sulfoxide. The ionic work function data are compared with estimates of the absolute Gibbs energy of solvation obtained by an extrathermodynamic route for the same ions. The work function data for the proton are used to estimate the absolute potential of the standard hydrogen electrode in each solvent. The results obtained here are compared with those published earlier by Trasatti (Trasatti, S. Electrochim. Acta 1987, 32, 843) and more recently by Kelly et al. (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2006, 110, 16066. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2007, 111, 408). A comparison of the ionic work function with the absolute Gibbs solvation energy permits an estimation of the surface potential of the solvent. The results show that the surface potential of water is small and positive whereas the surface potential of the nonaqueous solvents considered is negative. The sign of the surface potential is consistent with the known structure of each solvent.
doi_str_mv 10.1021/la7038976
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69478334</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69478334</sourcerecordid><originalsourceid>FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33</originalsourceid><addsrcrecordid>eNptkE1P4zAURS3ECDrAgj-AvAFpFpmxY8eOl6iUjxHSVFAEYmM5zisYUhtsR2L-PYFWZcPqLd7R0b0XoX1KflNS0j-dkYTVSooNNKJVSYqqLuUmGhHJWSG5YNvoZ0pPhBDFuNpC27QWikhGR2g6ewR8Ebyz-DbEZ3zae5td8Nj4Fruc8FXoADuPJym7hcnOP-DjJoWuz4AnHdgcQwt4GjL47EyXdtGP-XBgb3V30M3pZDY-Ly7_nV2Mjy8Lw7nMRTPkbayBtuXcUsWZJcQKIRi0FRhWcVUZVnJJFEgY2lUKzEertpS8mQNjO-ho6X2J4bWHlPXCJQtdZzyEPmmhuKwZ4wP4awnaGFKKMNcvcWgS_2tK9Md8ej3fwB6spH2zgPaLXO01AIcrwCRrunk03rq05koiylJ8iool51KGt_XfxGctJJOVnk2v9d39Cf1Lzu90_eU1Numn0Ec_bPdNwHdIBJEi</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69478334</pqid></control><display><type>article</type><title>The Ionic Work Function and its Role in Estimating Absolute Electrode Potentials</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Fawcett, W. Ronald</creator><creatorcontrib>Fawcett, W. Ronald</creatorcontrib><description>The experimental determination of the ionic work function is briefly described. Data for the proton, alkali metal ions, and halide ions in water, originally published by Randles (Randles, J. E. B. Trans Faraday Soc. 1956, 52, 1573) are recalculated on the basis of up-to-date thermodynamic tables. These calculations are extended to data for the same ions in four nonaqueous solvents, namely, methanol, ethanol, acetonitrile, and dimethyl sulfoxide. The ionic work function data are compared with estimates of the absolute Gibbs energy of solvation obtained by an extrathermodynamic route for the same ions. The work function data for the proton are used to estimate the absolute potential of the standard hydrogen electrode in each solvent. The results obtained here are compared with those published earlier by Trasatti (Trasatti, S. Electrochim. Acta 1987, 32, 843) and more recently by Kelly et al. (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2006, 110, 16066. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2007, 111, 408). A comparison of the ionic work function with the absolute Gibbs solvation energy permits an estimation of the surface potential of the solvent. The results show that the surface potential of water is small and positive whereas the surface potential of the nonaqueous solvents considered is negative. The sign of the surface potential is consistent with the known structure of each solvent.</description><identifier>ISSN: 0743-7463</identifier><identifier>EISSN: 1520-5827</identifier><identifier>DOI: 10.1021/la7038976</identifier><identifier>PMID: 18690731</identifier><identifier>CODEN: LANGD5</identifier><language>eng</language><publisher>Washington, DC: American Chemical Society</publisher><subject>Chemistry ; Colloidal state and disperse state ; Electrochemistry: Charge Transfer, Electrocatalysis, Kinetics, Bioelectrochemistry ; Exact sciences and technology ; General and physical chemistry ; Surface physical chemistry</subject><ispartof>Langmuir, 2008-09, Vol.24 (17), p.9868-9875</ispartof><rights>Copyright © 2008 American Chemical Society</rights><rights>2008 INIST-CNRS</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33</citedby><cites>FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27903,27904</link.rule.ids><backlink>$$Uhttp://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&amp;idt=20622676$$DView record in Pascal Francis$$Hfree_for_read</backlink><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18690731$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fawcett, W. Ronald</creatorcontrib><title>The Ionic Work Function and its Role in Estimating Absolute Electrode Potentials</title><title>Langmuir</title><addtitle>Langmuir</addtitle><description>The experimental determination of the ionic work function is briefly described. Data for the proton, alkali metal ions, and halide ions in water, originally published by Randles (Randles, J. E. B. Trans Faraday Soc. 1956, 52, 1573) are recalculated on the basis of up-to-date thermodynamic tables. These calculations are extended to data for the same ions in four nonaqueous solvents, namely, methanol, ethanol, acetonitrile, and dimethyl sulfoxide. The ionic work function data are compared with estimates of the absolute Gibbs energy of solvation obtained by an extrathermodynamic route for the same ions. The work function data for the proton are used to estimate the absolute potential of the standard hydrogen electrode in each solvent. The results obtained here are compared with those published earlier by Trasatti (Trasatti, S. Electrochim. Acta 1987, 32, 843) and more recently by Kelly et al. (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2006, 110, 16066. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2007, 111, 408). A comparison of the ionic work function with the absolute Gibbs solvation energy permits an estimation of the surface potential of the solvent. The results show that the surface potential of water is small and positive whereas the surface potential of the nonaqueous solvents considered is negative. The sign of the surface potential is consistent with the known structure of each solvent.</description><subject>Chemistry</subject><subject>Colloidal state and disperse state</subject><subject>Electrochemistry: Charge Transfer, Electrocatalysis, Kinetics, Bioelectrochemistry</subject><subject>Exact sciences and technology</subject><subject>General and physical chemistry</subject><subject>Surface physical chemistry</subject><issn>0743-7463</issn><issn>1520-5827</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNptkE1P4zAURS3ECDrAgj-AvAFpFpmxY8eOl6iUjxHSVFAEYmM5zisYUhtsR2L-PYFWZcPqLd7R0b0XoX1KflNS0j-dkYTVSooNNKJVSYqqLuUmGhHJWSG5YNvoZ0pPhBDFuNpC27QWikhGR2g6ewR8Ebyz-DbEZ3zae5td8Nj4Fruc8FXoADuPJym7hcnOP-DjJoWuz4AnHdgcQwt4GjL47EyXdtGP-XBgb3V30M3pZDY-Ly7_nV2Mjy8Lw7nMRTPkbayBtuXcUsWZJcQKIRi0FRhWcVUZVnJJFEgY2lUKzEertpS8mQNjO-ho6X2J4bWHlPXCJQtdZzyEPmmhuKwZ4wP4awnaGFKKMNcvcWgS_2tK9Md8ej3fwB6spH2zgPaLXO01AIcrwCRrunk03rq05koiylJ8iool51KGt_XfxGctJJOVnk2v9d39Cf1Lzu90_eU1Numn0Ec_bPdNwHdIBJEi</recordid><startdate>20080902</startdate><enddate>20080902</enddate><creator>Fawcett, W. Ronald</creator><general>American Chemical Society</general><scope>BSCLL</scope><scope>IQODW</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>20080902</creationdate><title>The Ionic Work Function and its Role in Estimating Absolute Electrode Potentials</title><author>Fawcett, W. Ronald</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Chemistry</topic><topic>Colloidal state and disperse state</topic><topic>Electrochemistry: Charge Transfer, Electrocatalysis, Kinetics, Bioelectrochemistry</topic><topic>Exact sciences and technology</topic><topic>General and physical chemistry</topic><topic>Surface physical chemistry</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fawcett, W. Ronald</creatorcontrib><collection>Istex</collection><collection>Pascal-Francis</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Langmuir</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fawcett, W. Ronald</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Ionic Work Function and its Role in Estimating Absolute Electrode Potentials</atitle><jtitle>Langmuir</jtitle><addtitle>Langmuir</addtitle><date>2008-09-02</date><risdate>2008</risdate><volume>24</volume><issue>17</issue><spage>9868</spage><epage>9875</epage><pages>9868-9875</pages><issn>0743-7463</issn><eissn>1520-5827</eissn><coden>LANGD5</coden><abstract>The experimental determination of the ionic work function is briefly described. Data for the proton, alkali metal ions, and halide ions in water, originally published by Randles (Randles, J. E. B. Trans Faraday Soc. 1956, 52, 1573) are recalculated on the basis of up-to-date thermodynamic tables. These calculations are extended to data for the same ions in four nonaqueous solvents, namely, methanol, ethanol, acetonitrile, and dimethyl sulfoxide. The ionic work function data are compared with estimates of the absolute Gibbs energy of solvation obtained by an extrathermodynamic route for the same ions. The work function data for the proton are used to estimate the absolute potential of the standard hydrogen electrode in each solvent. The results obtained here are compared with those published earlier by Trasatti (Trasatti, S. Electrochim. Acta 1987, 32, 843) and more recently by Kelly et al. (Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2006, 110, 16066. Kelly, C. P.; Cramer, C. J.; Truhlar, D. G. J. Phys. Chem. B 2007, 111, 408). A comparison of the ionic work function with the absolute Gibbs solvation energy permits an estimation of the surface potential of the solvent. The results show that the surface potential of water is small and positive whereas the surface potential of the nonaqueous solvents considered is negative. The sign of the surface potential is consistent with the known structure of each solvent.</abstract><cop>Washington, DC</cop><pub>American Chemical Society</pub><pmid>18690731</pmid><doi>10.1021/la7038976</doi><tpages>8</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0743-7463
ispartof Langmuir, 2008-09, Vol.24 (17), p.9868-9875
issn 0743-7463
1520-5827
language eng
recordid cdi_proquest_miscellaneous_69478334
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects Chemistry
Colloidal state and disperse state
Electrochemistry: Charge Transfer, Electrocatalysis, Kinetics, Bioelectrochemistry
Exact sciences and technology
General and physical chemistry
Surface physical chemistry
title The Ionic Work Function and its Role in Estimating Absolute Electrode Potentials
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-26T03%3A28%3A22IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Ionic%20Work%20Function%20and%20its%20Role%20in%20Estimating%20Absolute%20Electrode%20Potentials&rft.jtitle=Langmuir&rft.au=Fawcett,%20W.%20Ronald&rft.date=2008-09-02&rft.volume=24&rft.issue=17&rft.spage=9868&rft.epage=9875&rft.pages=9868-9875&rft.issn=0743-7463&rft.eissn=1520-5827&rft.coden=LANGD5&rft_id=info:doi/10.1021/la7038976&rft_dat=%3Cproquest_cross%3E69478334%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a447t-b389bcaedd44c1943c00c6663ed5ea35495a324709e7e70359ea5827d274bfe33%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69478334&rft_id=info:pmid/18690731&rfr_iscdi=true