Loading…

Nanofibrous matrices of poly(lactic acid) and gelatin polymeric blends for the improvement of cellular responses

Substrates with a nanofibrous morphology are considered as a prospective matrix to populate and support cells in the tissue regeneration area. Although the nanofibers made of synthetic degradable polymers, including poly(lactic acid) (PLA), have been well studied, their poor cell affinity has restri...

Full description

Saved in:
Bibliographic Details
Published in:Journal of biomedical materials research. Part A 2008-10, Vol.87A (1), p.25-32
Main Authors: Kim, Hae-Won, Yu, Hye-Sun, Lee, Hae-Hyoung
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Substrates with a nanofibrous morphology are considered as a prospective matrix to populate and support cells in the tissue regeneration area. Although the nanofibers made of synthetic degradable polymers, including poly(lactic acid) (PLA), have been well studied, their poor cell affinity has restricted wider applications. Herein, we produced blending nanofibers made of PLA and gelatin to improve the cellular responses of PLA. For this, both PLA and gelatin were dissolved in an organic solvent, varying the compositions of PLA:gelatin at 1:3 and 1:1 by weight, and the solutions were electrospun into nanofibers. At all compositions, nanofibers could be successfully generated with diameters of approximately hundreds of nanometers. The addition of gelatin into PLA markedly improved the wettability of the nanofibrous substrate. The osteoblastic cells attached and spread well on all the blending nanofibers and pure PLA. In particular, the cellular growth was significantly higher on the gelatin‐blended PLA than on the pure PLA nanofiber. On the basis of this study, the PLA/gelatin blending polymeric nanofibers are considered to be useful as a bone cell supporting matrix in the tissue regeneration area. © 2007 Wiley Periodicals, Inc. J Biomed Mater Res, 2008
ISSN:1549-3296
1552-4965
DOI:10.1002/jbm.a.31677