Loading…

Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply

The heterologous production of fungal polyketides was investigated using 6-methylsalicylic acid synthase (6-MSAS) as a model polyketide synthase and Saccharomyces cerevisiae as a host. In order to improve the production of 6-MSA by enhancing the supply of precursors, the promoter of the gene ( ACC1)...

Full description

Saved in:
Bibliographic Details
Published in:Metabolic engineering 2008-09, Vol.10 (5), p.246-254
Main Authors: Wattanachaisaereekul, Songsak, Lantz, Anna Eliasson, Nielsen, Michael Lynge, Nielsen, Jens
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693
cites cdi_FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693
container_end_page 254
container_issue 5
container_start_page 246
container_title Metabolic engineering
container_volume 10
creator Wattanachaisaereekul, Songsak
Lantz, Anna Eliasson
Nielsen, Michael Lynge
Nielsen, Jens
description The heterologous production of fungal polyketides was investigated using 6-methylsalicylic acid synthase (6-MSAS) as a model polyketide synthase and Saccharomyces cerevisiae as a host. In order to improve the production of 6-MSA by enhancing the supply of precursors, the promoter of the gene ( ACC1) encoding acetyl-CoA carboxylase, which catalyzes the conversion of acetyl-CoA to malonyl-CoA, was replaced with a strong, constitutive promoter ( TEF1p) in a strain harboring two plasmids carrying the genes encoding 6-MSAS from Penicillium patulum and PPTase from Aspergillus nidulans, respectively. The strain was characterized in batch cultivations with a glucose minimal media (20 g/L), and a 60% increase in 6-MSA titer was observed compared to a strain having the native promoter in front of ACC1. The production of 6-MSA was scaled up by the cultivation in minimal media containing 50 g/L of glucose, and hereby a final titer of 554±26 mg/L of 6-MSA was obtained.
doi_str_mv 10.1016/j.ymben.2008.04.005
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69499841</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S1096717608000190</els_id><sourcerecordid>69499841</sourcerecordid><originalsourceid>FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693</originalsourceid><addsrcrecordid>eNqFkEFP3DAQha2qVYEtv6AS8qm3hHHiOPGBw2oFLRKoSLTiaCX2BLwkcWonSPn39XZXcCunmXnz5o30EfKVQcqAifNtuvQNDmkGUKXAU4DiAzlmIEVSsop_fO1LcUROQtgCMFZI9pkcsaooirg4Jg933plZT9YN1LV0ekI6um55xskapCK5vV9TO9AF6zBRHB7tgOjR0Nb5qGsf9Tj1deeGpUs2bk3DPI7d8oV8ausu4Omhrsjvq8tfmx_Jzc_v15v1TaJ5wackQ1Plmsu2NCKHhnFoNZRa6FLwujE8z3LDZMsqZCXk3NQATSsMyExmVS1kviLf9rmjd39mDJPqbdDYdfWAbg5KSC5lxdm7xgyynGdyl5jvjdq7EDy2avS2r_2iGKgdeLVV_8CrHXgFXEXw8ersED83PZq3mwPpaLjYGzDSeLHoVdAWB43GetSTMs7-98Ffvn-Umw</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20234299</pqid></control><display><type>article</type><title>Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply</title><source>ScienceDirect Freedom Collection</source><creator>Wattanachaisaereekul, Songsak ; Lantz, Anna Eliasson ; Nielsen, Michael Lynge ; Nielsen, Jens</creator><creatorcontrib>Wattanachaisaereekul, Songsak ; Lantz, Anna Eliasson ; Nielsen, Michael Lynge ; Nielsen, Jens</creatorcontrib><description>The heterologous production of fungal polyketides was investigated using 6-methylsalicylic acid synthase (6-MSAS) as a model polyketide synthase and Saccharomyces cerevisiae as a host. In order to improve the production of 6-MSA by enhancing the supply of precursors, the promoter of the gene ( ACC1) encoding acetyl-CoA carboxylase, which catalyzes the conversion of acetyl-CoA to malonyl-CoA, was replaced with a strong, constitutive promoter ( TEF1p) in a strain harboring two plasmids carrying the genes encoding 6-MSAS from Penicillium patulum and PPTase from Aspergillus nidulans, respectively. The strain was characterized in batch cultivations with a glucose minimal media (20 g/L), and a 60% increase in 6-MSA titer was observed compared to a strain having the native promoter in front of ACC1. The production of 6-MSA was scaled up by the cultivation in minimal media containing 50 g/L of glucose, and hereby a final titer of 554±26 mg/L of 6-MSA was obtained.</description><identifier>ISSN: 1096-7176</identifier><identifier>EISSN: 1096-7184</identifier><identifier>DOI: 10.1016/j.ymben.2008.04.005</identifier><identifier>PMID: 18555717</identifier><language>eng</language><publisher>Belgium: Elsevier Inc</publisher><subject>Acetyl Coenzyme A - genetics ; Acetyl Coenzyme A - metabolism ; Acetyl-CoA carboxylase ; Acetyltransferases - biosynthesis ; Acetyltransferases - genetics ; Acyltransferases - biosynthesis ; Acyltransferases - genetics ; Aspergillus nidulans ; Aspergillus nidulans - enzymology ; Aspergillus nidulans - genetics ; Heterologous expression ; Ligases - biosynthesis ; Ligases - genetics ; Macrolides - metabolism ; Malonyl Coenzyme A - genetics ; Malonyl Coenzyme A - metabolism ; Malonyl-CoA ; Multienzyme Complexes - biosynthesis ; Multienzyme Complexes - genetics ; Oxidoreductases - biosynthesis ; Oxidoreductases - genetics ; Penicillium - enzymology ; Penicillium - genetics ; Penicillium patulum ; Peptide Elongation Factor 1 - genetics ; Peptide Elongation Factor 1 - metabolism ; Polyketides ; Precursor supply ; Saccharomyces cerevisiae ; Saccharomyces cerevisiae - enzymology ; Saccharomyces cerevisiae - genetics ; Saccharomyces cerevisiae - growth &amp; development ; Saccharomyces cerevisiae Proteins - genetics ; Saccharomyces cerevisiae Proteins - metabolism ; Salicylates - metabolism</subject><ispartof>Metabolic engineering, 2008-09, Vol.10 (5), p.246-254</ispartof><rights>2008 Elsevier Inc.</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693</citedby><cites>FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18555717$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Wattanachaisaereekul, Songsak</creatorcontrib><creatorcontrib>Lantz, Anna Eliasson</creatorcontrib><creatorcontrib>Nielsen, Michael Lynge</creatorcontrib><creatorcontrib>Nielsen, Jens</creatorcontrib><title>Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply</title><title>Metabolic engineering</title><addtitle>Metab Eng</addtitle><description>The heterologous production of fungal polyketides was investigated using 6-methylsalicylic acid synthase (6-MSAS) as a model polyketide synthase and Saccharomyces cerevisiae as a host. In order to improve the production of 6-MSA by enhancing the supply of precursors, the promoter of the gene ( ACC1) encoding acetyl-CoA carboxylase, which catalyzes the conversion of acetyl-CoA to malonyl-CoA, was replaced with a strong, constitutive promoter ( TEF1p) in a strain harboring two plasmids carrying the genes encoding 6-MSAS from Penicillium patulum and PPTase from Aspergillus nidulans, respectively. The strain was characterized in batch cultivations with a glucose minimal media (20 g/L), and a 60% increase in 6-MSA titer was observed compared to a strain having the native promoter in front of ACC1. The production of 6-MSA was scaled up by the cultivation in minimal media containing 50 g/L of glucose, and hereby a final titer of 554±26 mg/L of 6-MSA was obtained.</description><subject>Acetyl Coenzyme A - genetics</subject><subject>Acetyl Coenzyme A - metabolism</subject><subject>Acetyl-CoA carboxylase</subject><subject>Acetyltransferases - biosynthesis</subject><subject>Acetyltransferases - genetics</subject><subject>Acyltransferases - biosynthesis</subject><subject>Acyltransferases - genetics</subject><subject>Aspergillus nidulans</subject><subject>Aspergillus nidulans - enzymology</subject><subject>Aspergillus nidulans - genetics</subject><subject>Heterologous expression</subject><subject>Ligases - biosynthesis</subject><subject>Ligases - genetics</subject><subject>Macrolides - metabolism</subject><subject>Malonyl Coenzyme A - genetics</subject><subject>Malonyl Coenzyme A - metabolism</subject><subject>Malonyl-CoA</subject><subject>Multienzyme Complexes - biosynthesis</subject><subject>Multienzyme Complexes - genetics</subject><subject>Oxidoreductases - biosynthesis</subject><subject>Oxidoreductases - genetics</subject><subject>Penicillium - enzymology</subject><subject>Penicillium - genetics</subject><subject>Penicillium patulum</subject><subject>Peptide Elongation Factor 1 - genetics</subject><subject>Peptide Elongation Factor 1 - metabolism</subject><subject>Polyketides</subject><subject>Precursor supply</subject><subject>Saccharomyces cerevisiae</subject><subject>Saccharomyces cerevisiae - enzymology</subject><subject>Saccharomyces cerevisiae - genetics</subject><subject>Saccharomyces cerevisiae - growth &amp; development</subject><subject>Saccharomyces cerevisiae Proteins - genetics</subject><subject>Saccharomyces cerevisiae Proteins - metabolism</subject><subject>Salicylates - metabolism</subject><issn>1096-7176</issn><issn>1096-7184</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkEFP3DAQha2qVYEtv6AS8qm3hHHiOPGBw2oFLRKoSLTiaCX2BLwkcWonSPn39XZXcCunmXnz5o30EfKVQcqAifNtuvQNDmkGUKXAU4DiAzlmIEVSsop_fO1LcUROQtgCMFZI9pkcsaooirg4Jg933plZT9YN1LV0ekI6um55xskapCK5vV9TO9AF6zBRHB7tgOjR0Nb5qGsf9Tj1deeGpUs2bk3DPI7d8oV8ausu4Omhrsjvq8tfmx_Jzc_v15v1TaJ5wackQ1Plmsu2NCKHhnFoNZRa6FLwujE8z3LDZMsqZCXk3NQATSsMyExmVS1kviLf9rmjd39mDJPqbdDYdfWAbg5KSC5lxdm7xgyynGdyl5jvjdq7EDy2avS2r_2iGKgdeLVV_8CrHXgFXEXw8ersED83PZq3mwPpaLjYGzDSeLHoVdAWB43GetSTMs7-98Ffvn-Umw</recordid><startdate>20080901</startdate><enddate>20080901</enddate><creator>Wattanachaisaereekul, Songsak</creator><creator>Lantz, Anna Eliasson</creator><creator>Nielsen, Michael Lynge</creator><creator>Nielsen, Jens</creator><general>Elsevier Inc</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QO</scope><scope>7T7</scope><scope>8FD</scope><scope>C1K</scope><scope>FR3</scope><scope>M7N</scope><scope>P64</scope><scope>7X8</scope></search><sort><creationdate>20080901</creationdate><title>Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply</title><author>Wattanachaisaereekul, Songsak ; Lantz, Anna Eliasson ; Nielsen, Michael Lynge ; Nielsen, Jens</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Acetyl Coenzyme A - genetics</topic><topic>Acetyl Coenzyme A - metabolism</topic><topic>Acetyl-CoA carboxylase</topic><topic>Acetyltransferases - biosynthesis</topic><topic>Acetyltransferases - genetics</topic><topic>Acyltransferases - biosynthesis</topic><topic>Acyltransferases - genetics</topic><topic>Aspergillus nidulans</topic><topic>Aspergillus nidulans - enzymology</topic><topic>Aspergillus nidulans - genetics</topic><topic>Heterologous expression</topic><topic>Ligases - biosynthesis</topic><topic>Ligases - genetics</topic><topic>Macrolides - metabolism</topic><topic>Malonyl Coenzyme A - genetics</topic><topic>Malonyl Coenzyme A - metabolism</topic><topic>Malonyl-CoA</topic><topic>Multienzyme Complexes - biosynthesis</topic><topic>Multienzyme Complexes - genetics</topic><topic>Oxidoreductases - biosynthesis</topic><topic>Oxidoreductases - genetics</topic><topic>Penicillium - enzymology</topic><topic>Penicillium - genetics</topic><topic>Penicillium patulum</topic><topic>Peptide Elongation Factor 1 - genetics</topic><topic>Peptide Elongation Factor 1 - metabolism</topic><topic>Polyketides</topic><topic>Precursor supply</topic><topic>Saccharomyces cerevisiae</topic><topic>Saccharomyces cerevisiae - enzymology</topic><topic>Saccharomyces cerevisiae - genetics</topic><topic>Saccharomyces cerevisiae - growth &amp; development</topic><topic>Saccharomyces cerevisiae Proteins - genetics</topic><topic>Saccharomyces cerevisiae Proteins - metabolism</topic><topic>Salicylates - metabolism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wattanachaisaereekul, Songsak</creatorcontrib><creatorcontrib>Lantz, Anna Eliasson</creatorcontrib><creatorcontrib>Nielsen, Michael Lynge</creatorcontrib><creatorcontrib>Nielsen, Jens</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Biotechnology Research Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Technology Research Database</collection><collection>Environmental Sciences and Pollution Management</collection><collection>Engineering Research Database</collection><collection>Algology Mycology and Protozoology Abstracts (Microbiology C)</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Metabolic engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wattanachaisaereekul, Songsak</au><au>Lantz, Anna Eliasson</au><au>Nielsen, Michael Lynge</au><au>Nielsen, Jens</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply</atitle><jtitle>Metabolic engineering</jtitle><addtitle>Metab Eng</addtitle><date>2008-09-01</date><risdate>2008</risdate><volume>10</volume><issue>5</issue><spage>246</spage><epage>254</epage><pages>246-254</pages><issn>1096-7176</issn><eissn>1096-7184</eissn><abstract>The heterologous production of fungal polyketides was investigated using 6-methylsalicylic acid synthase (6-MSAS) as a model polyketide synthase and Saccharomyces cerevisiae as a host. In order to improve the production of 6-MSA by enhancing the supply of precursors, the promoter of the gene ( ACC1) encoding acetyl-CoA carboxylase, which catalyzes the conversion of acetyl-CoA to malonyl-CoA, was replaced with a strong, constitutive promoter ( TEF1p) in a strain harboring two plasmids carrying the genes encoding 6-MSAS from Penicillium patulum and PPTase from Aspergillus nidulans, respectively. The strain was characterized in batch cultivations with a glucose minimal media (20 g/L), and a 60% increase in 6-MSA titer was observed compared to a strain having the native promoter in front of ACC1. The production of 6-MSA was scaled up by the cultivation in minimal media containing 50 g/L of glucose, and hereby a final titer of 554±26 mg/L of 6-MSA was obtained.</abstract><cop>Belgium</cop><pub>Elsevier Inc</pub><pmid>18555717</pmid><doi>10.1016/j.ymben.2008.04.005</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 1096-7176
ispartof Metabolic engineering, 2008-09, Vol.10 (5), p.246-254
issn 1096-7176
1096-7184
language eng
recordid cdi_proquest_miscellaneous_69499841
source ScienceDirect Freedom Collection
subjects Acetyl Coenzyme A - genetics
Acetyl Coenzyme A - metabolism
Acetyl-CoA carboxylase
Acetyltransferases - biosynthesis
Acetyltransferases - genetics
Acyltransferases - biosynthesis
Acyltransferases - genetics
Aspergillus nidulans
Aspergillus nidulans - enzymology
Aspergillus nidulans - genetics
Heterologous expression
Ligases - biosynthesis
Ligases - genetics
Macrolides - metabolism
Malonyl Coenzyme A - genetics
Malonyl Coenzyme A - metabolism
Malonyl-CoA
Multienzyme Complexes - biosynthesis
Multienzyme Complexes - genetics
Oxidoreductases - biosynthesis
Oxidoreductases - genetics
Penicillium - enzymology
Penicillium - genetics
Penicillium patulum
Peptide Elongation Factor 1 - genetics
Peptide Elongation Factor 1 - metabolism
Polyketides
Precursor supply
Saccharomyces cerevisiae
Saccharomyces cerevisiae - enzymology
Saccharomyces cerevisiae - genetics
Saccharomyces cerevisiae - growth & development
Saccharomyces cerevisiae Proteins - genetics
Saccharomyces cerevisiae Proteins - metabolism
Salicylates - metabolism
title Production of the polyketide 6-MSA in yeast engineered for increased malonyl-CoA supply
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-26T03%3A48%3A58IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Production%20of%20the%20polyketide%206-MSA%20in%20yeast%20engineered%20for%20increased%20malonyl-CoA%20supply&rft.jtitle=Metabolic%20engineering&rft.au=Wattanachaisaereekul,%20Songsak&rft.date=2008-09-01&rft.volume=10&rft.issue=5&rft.spage=246&rft.epage=254&rft.pages=246-254&rft.issn=1096-7176&rft.eissn=1096-7184&rft_id=info:doi/10.1016/j.ymben.2008.04.005&rft_dat=%3Cproquest_cross%3E69499841%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c454t-2ed83c49f7d630b140fc07c6c764abd4323d19f18e17034da00bf6d092928a693%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20234299&rft_id=info:pmid/18555717&rfr_iscdi=true