Loading…

Methane concentration and isotopic composition measurements with a mid-infrared quantum-cascade laser

A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured la...

Full description

Saved in:
Bibliographic Details
Published in:Optics letters 1999-12, Vol.24 (23), p.1762-1764
Main Authors: Kosterev, A. A., Curl, R. F., Tittel, F. K., Gmachl, C., Capasso, F., Sivco, D. L., Baillargeon, J. N., Hutchinson, A. L., Cho, A. Y.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A quantum-cascade laser operating at a wavelength of 8.1 micrometers was used for high-sensitivity absorption spectroscopy of methane (CH4). The laser frequency was continuously scanned with current over more than 3 cm-1, and absorption spectra of the CH4 nu 4 P branch were recorded. The measured laser linewidth was 50 MHz. A CH4 concentration of 15.6 parts in 10(6) ( ppm) in 50 Torr of air was measured in a 43-cm path length with +/- 0.5-ppm accuracy when the signal was averaged over 400 scans. The minimum detectable absorption in such direct absorption measurements is estimated to be 1.1 x 10(-4). The content of 13CH4 and CH3D species in a CH4 sample was determined.
ISSN:0146-9592
1539-4794
DOI:10.1364/OL.24.001762