Loading…
Exact solution of the asymmetric exclusion model with particles of arbitrary size
A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s=0,1,2, ..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distributi...
Saved in:
Published in: | Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics Statistical physics, plasmas, fluids, and related interdisciplinary topics, 1999-07, Vol.60 (1), p.79-88 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A generalization of the simple exclusion asymmetric model is introduced. In this model an arbitrary mixture of molecules with distinct sizes s=0,1,2, ..., in units of lattice space, diffuses asymmetrically on the lattice. A related surface growth model is also presented. Variations of the distribution of the molecules sizes may change the excluded volume almost continuously. We solve the model exactly through the Bethe ansatz and the dynamical critical exponent z is calculated from the finite-size corrections of the mass gap of the related quantum chain. Our results show that for an arbitrary distribution of molecules, the dynamical critical behavior is on the Kardar-Parizi-Zhang universality. |
---|---|
ISSN: | 1063-651X 1095-3787 |
DOI: | 10.1103/PhysRevE.60.79 |