Loading…
A New Topological Model of the Cardiac Sarcolemmal Na+-Ca2+ Exchanger
The current topological model of the Na+-Ca2+ exchanger consists of 11 transmembrane segments with extracellular loops a, c, e, g, i, and k and cytoplasmic loops b, d, f, h, and j. Cytoplasmic loop f, which plays a role in regulating the exchanger, is large and separates the first five from the last...
Saved in:
Published in: | The Journal of biological chemistry 1999-01, Vol.274 (2), p.910-917 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The current topological model of the Na+-Ca2+ exchanger consists of 11 transmembrane segments with extracellular loops a, c, e, g, i, and k and cytoplasmic loops b, d, f, h, and j. Cytoplasmic loop f, which plays a role in regulating the exchanger, is large and separates the first five from the last six transmembrane segments. We have tested this topological model by mutating residues near putative transmembrane segments to cysteine and then examining the effects of intracellular and extracellular applications of sulfhydryl-modifying reagents on exchanger activity. To aid in our topological studies, we also constructed a cysteineless Na+-Ca2+ exchanger. This mutant is fully functional in Na+gradient-dependent 45Ca2+ uptake measurements and displays wild-type regulatory properties. It is concluded that the 15 endogenous cysteine residues are not essential for either activity or regulation of the exchanger. Our data support the current model by placing loops c and e at the extracellular surface and loops d, j, and l at the intracellular surface. However, the data also support placing Ser-788 of loop h at the extracellular surface and Gly-837 of loop i at the intracellular surface. To account for these data, we propose a revision of the model that places transmembrane segment 6 in cytoplasmic loop f. Additionally, we propose that putative transmembrane segment 9 does not span the membrane, but may form a “P-loop”-like structure. |
---|---|
ISSN: | 0021-9258 1083-351X |
DOI: | 10.1074/jbc.274.2.910 |