Loading…

Organization and expression of photosynthesis genes and operons in anoxygenic photosynthetic proteobacteria

Genes belonging to the same metabolic route are usually organized in operons in microbial genomes. For instance, most genes involved in photosynthesis were found clustered and organized in operons in photosynthetic Alpha- and Betaproteobacteria. The discovery of Gammaproteobacteria with a conserved...

Full description

Saved in:
Bibliographic Details
Published in:Environmental microbiology 2008-09, Vol.10 (9), p.2267-2276
Main Authors: Liotenberg, Sylviane, Steunou, Anne-Soisig, Picaud, Martine, Reiss-Husson, Françoise, Astier, Chantal, Ouchane, Soufian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Genes belonging to the same metabolic route are usually organized in operons in microbial genomes. For instance, most genes involved in photosynthesis were found clustered and organized in operons in photosynthetic Alpha- and Betaproteobacteria. The discovery of Gammaproteobacteria with a conserved photosynthetic gene cluster revives the questions on the role and the maintenance of such organization in proteobacteria. In this paper, we report the analysis of the structure and expression of the 14 kb cluster (crtEF-bchCXYZ-pufBALMC-crtADC) in the photosynthetic betaproteobacterium Rubrivivax gelatinosus, with the purpose of understanding the reasons and the biological constraints that might have led to the clustering of photosynthesis genes. The genetic analyses are substantiated by reverse transcription-PCR data which reveal the presence of a transcript encompassing the 14 genes and provide evidence of a polycistronic 'super-operon' organization starting at crtE and ending 14 kb downstream at the crtC gene. Furthermore, genetic analyses suggest that one of the selection pressures that may have driven and maintained the photosynthesis operons/super-operons in proteobacteria could very likely be the coexpression and regulation of the clustered genes/operon.
ISSN:1462-2912
1462-2920
DOI:10.1111/j.1462-2920.2008.01649.x