Loading…

Overlapping but Distinct Patterns of Histone Acetylation by the Human Coactivators p300 and PCAF within Nucleosomal Substrates

A number of transcriptional coactivators possess intrinsic histone acetylase activity, providing a direct link between hyperacetylated chromatin and transcriptional activation. We have determined the core histone residues acetylated in vitro by recombinant p300 and PCAF within mononucleosomes. p300...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-01, Vol.274 (3), p.1189-1192
Main Authors: Schiltz, R L, Mizzen, C A, Vassilev, A, Cook, R G, Allis, C D, Nakatani, Y
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A number of transcriptional coactivators possess intrinsic histone acetylase activity, providing a direct link between hyperacetylated chromatin and transcriptional activation. We have determined the core histone residues acetylated in vitro by recombinant p300 and PCAF within mononucleosomes. p300 specifically acetylates all sites of histones H2A and H2B known to be acetylated in bulk chromatin in vivo but preferentially acetylates lysines 14 and 18 of histone H3 and lysines 5 and 8 of histone H4. PCAF primarily acetylates lysine 14 of H3 but also less efficiently acetylates lysine 8 of H4. PCAF in its native form, which is present in a stable multimeric protein complex lacking p300/CBP, primarily acetylates H3 to a monoacetylated form, suggesting that PCAF-associated polypeptides do not alter the substrate specificity. These distinct patterns of acetylation by the p300 and PCAF may contribute to their differential roles in transcriptional regulation.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.3.1189