Loading…

Genome size is a strong predictor of cell size and stomatal density in angiosperms

Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparati...

Full description

Saved in:
Bibliographic Details
Published in:The New phytologist 2008-09, Vol.179 (4), p.975-986
Main Authors: Beaulieu, Jeremy M., Leitch, Ilia J., Patel, Sunil, Pendharkar, Arjun, Knight, Charles A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Across eukaryotes phenotypic correlations with genome size are thought to scale from genome size effects on cell size. However, for plants the genome/cell size link has only been thoroughly documented within ploidy series and small subsets of herbaceous species. Here, the first large-scale comparative analysis is made of the relationship between genome size and cell size across 101 species of angiosperms of varying growth forms. Guard cell length and epidermal cell area were used as two metrics of cell size and, in addition, stomatal density was measured. There was a significant positive relationship between genome size and both guard cell length and epidermal cell area and a negative relationship with stomatal density. Independent contrast analyses revealed that these traits are undergoing correlated evolution with genome size. However, the relationship was growth form dependent (nonsignificant results within trees/shrubs), although trees had the smallest genome/cell sizes and the highest stomatal density. These results confirm the generality of the genome size/cell size relationship. The results also suggest that changes in genome size, with concomitant influences on stomatal size and density, may influence physiology, and perhaps play an important genetic role in determining the ecological and life-history strategy of a species.
ISSN:0028-646X
1469-8137
DOI:10.1111/j.1469-8137.2008.02528.x