Loading…

The Effect of Shock Configuration and Delivered Energy on Defibrillation Impedance

Shock impedance is an important determinant of defibrillation efficacy. Lead configuration, shock polarity, and delivered energy can affect shock impedance, but these variables have not been studied in active can lead systems. The present study was a prospective evaluation of 25 patients undergoing...

Full description

Saved in:
Bibliographic Details
Published in:Pacing and clinical electrophysiology 1999-01, Vol.22 (1), p.165-168
Main Authors: OLSOVSKY, MARY R., SHOROFSKY, STEPHEN R., GOLD, MICHAEL R.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Shock impedance is an important determinant of defibrillation efficacy. Lead configuration, shock polarity, and delivered energy can affect shock impedance, but these variables have not been studied in active can lead systems. The present study was a prospective evaluation of 25 patients undergoing initial transvenous defibrillator implantation. In all patients, a dual coil lead and pectoral emulator were placed and three lead configurations were tested in random order: Lead (distal to proximal coil), unipolar (distal coil to can), and triad (distal coil to can + proximal coil). Shock energies of 0.1‐ to 15‐J shock were evaluated. Impedance increased a mean of 21% as delivered energy was decreased (P < 0.001), an effect independent of lead configuration. At all delivered energies, impedances in the unipolar configuration were about 40% higher than triad, while the lead configuration was about 20% higher than triad (ps < 0.001). Polarity did not affect impedance. These results indicate that transvenous lead configurations and delivered energy, but not polarity, significantly influence shock impedance. The magnitude of the increase of impedance at low energies is independent of the shocking pathway. This effect has important implications for low energy shocks used to terminate atrial fibrillation or ventricular tachycardia.
ISSN:0147-8389
1540-8159
DOI:10.1111/j.1540-8159.1999.tb00325.x