Loading…
Human uncoupling proteins and obesity
SCHRAUWEN, PATRICK, KEN WALDER, AND ERIC RAVUSSIN. Human coupling proteins and obesity. Obes. Res. 1999;7:97–105. Uncoupling protein (UCP) 2 and UCP3 are newly discovered proteins that can uncouple ATP production from mitochondrial respiration, thereby dissipating energy as heat and affecting energy...
Saved in:
Published in: | Obesity research 1999-01, Vol.7 (1), p.97-105 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | SCHRAUWEN, PATRICK, KEN WALDER, AND ERIC RAVUSSIN. Human coupling proteins and obesity. Obes. Res. 1999;7:97–105.
Uncoupling protein (UCP) 2 and UCP3 are newly discovered proteins that can uncouple ATP production from mitochondrial respiration, thereby dissipating energy as heat and affecting energy metabolism efficiency. In contrast to UCP1, which is only present in brown adipose tissue, UCP2 has a wide tissue distribution, whereas UCP3 is expressed predominantly in skeletal muscle. Some evidence of a role for UCPs in modulating metabolic rate was provided by linkage and association studies. Furthermore, UCP3 gene expression was found to correlate negatively with body mass index and positively with sleeping metabolic rate in Pima Indians. Treatment with thyroid hormone increases expression of the UCP2 and UCP3 genes. Other regulators of UCP2 and UCP3 gene expression are β3‐adrenergic agonists and glucocorticoids. Surprisingly, fasting has a stimulatory effect on UCP2 and UCP3 mRNA levels, possibly explained by the effects of free fatty acid on UCP2 and UCP3 gene expression. |
---|---|
ISSN: | 1071-7323 1550-8528 |
DOI: | 10.1002/j.1550-8528.1999.tb00396.x |