Loading…

Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer

We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge i...

Full description

Saved in:
Bibliographic Details
Published in:Journal of molecular biology 2008-10, Vol.383 (1), p.167-177
Main Authors: Lovering, Andrew L., De Castro, Liza, Strynadka, Natalie C.J.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3
cites cdi_FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3
container_end_page 177
container_issue 1
container_start_page 167
container_title Journal of molecular biology
container_volume 383
creator Lovering, Andrew L.
De Castro, Liza
Strynadka, Natalie C.J.
description We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a β-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.
doi_str_mv 10.1016/j.jmb.2008.08.020
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69586122</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S0022283608010139</els_id><sourcerecordid>69586122</sourcerecordid><originalsourceid>FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3</originalsourceid><addsrcrecordid>eNqFkE2LFDEURYMoTjv6A9xIrdxV-5KqpBNcyYzONIwo-LENqeRF0lQlbZJq6H9vtd3gboQLd3PuXRxCXlNYU6Di3W69m4Y1A5DrUxg8ISsKUrVSdPIpWQEw1jLZiSvyopQdAPCul8_JFZUbAUzyFfm5dRhr8MGaGlJskm9uj9FMwTbfap5tnbMZm89pQUqzjYc0HtA1ITZfcV-DS7_GozWxuVsqleNYs4nFY35JnnkzFnx16Wvy49PH7zf37cOXu-3Nh4fW9r2srZM9DINXvEfOOq4s9P0AnslBbGAQivlOCr5xm94jF51C7xRXTnXCmwX13TV5e_7d5_R7xlL1FIrFcTQR01y0UFwKyth_QQZ0kfMXpGfQ5lRKRq_3OUwmHzUFfbKud3qxrk_W9SkMls2by_k8TOj-LS6aF-D9GcDFxSFg1sUGjBZdyGirdik8cv8H_ayTAA</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>20105322</pqid></control><display><type>article</type><title>Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer</title><source>Elsevier</source><creator>Lovering, Andrew L. ; De Castro, Liza ; Strynadka, Natalie C.J.</creator><creatorcontrib>Lovering, Andrew L. ; De Castro, Liza ; Strynadka, Natalie C.J.</creatorcontrib><description>We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a β-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.</description><identifier>ISSN: 0022-2836</identifier><identifier>EISSN: 1089-8638</identifier><identifier>DOI: 10.1016/j.jmb.2008.08.020</identifier><identifier>PMID: 18760285</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Amino Acid Motifs ; Amino Acid Sequence ; Base Sequence ; Catalytic Domain ; crystal structure ; Crystallography, X-Ray ; DNA Primers - genetics ; glycosyltransferase ; Ligands ; Models, Molecular ; Molecular Sequence Data ; penicillin ; peptidoglycan ; Peptidoglycan - biosynthesis ; Peptidoglycan Glycosyltransferase - chemistry ; Peptidoglycan Glycosyltransferase - genetics ; Peptidoglycan Glycosyltransferase - metabolism ; Protein Structure, Tertiary ; Recombinant Proteins - chemistry ; Recombinant Proteins - genetics ; Recombinant Proteins - metabolism ; Sequence Homology, Amino Acid ; Staphylococcus aureus ; Staphylococcus aureus - enzymology ; Staphylococcus aureus - genetics ; π-bulge</subject><ispartof>Journal of molecular biology, 2008-10, Vol.383 (1), p.167-177</ispartof><rights>2008 Elsevier Ltd</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3</citedby><cites>FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27923,27924</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18760285$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Lovering, Andrew L.</creatorcontrib><creatorcontrib>De Castro, Liza</creatorcontrib><creatorcontrib>Strynadka, Natalie C.J.</creatorcontrib><title>Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer</title><title>Journal of molecular biology</title><addtitle>J Mol Biol</addtitle><description>We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a β-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.</description><subject>Amino Acid Motifs</subject><subject>Amino Acid Sequence</subject><subject>Base Sequence</subject><subject>Catalytic Domain</subject><subject>crystal structure</subject><subject>Crystallography, X-Ray</subject><subject>DNA Primers - genetics</subject><subject>glycosyltransferase</subject><subject>Ligands</subject><subject>Models, Molecular</subject><subject>Molecular Sequence Data</subject><subject>penicillin</subject><subject>peptidoglycan</subject><subject>Peptidoglycan - biosynthesis</subject><subject>Peptidoglycan Glycosyltransferase - chemistry</subject><subject>Peptidoglycan Glycosyltransferase - genetics</subject><subject>Peptidoglycan Glycosyltransferase - metabolism</subject><subject>Protein Structure, Tertiary</subject><subject>Recombinant Proteins - chemistry</subject><subject>Recombinant Proteins - genetics</subject><subject>Recombinant Proteins - metabolism</subject><subject>Sequence Homology, Amino Acid</subject><subject>Staphylococcus aureus</subject><subject>Staphylococcus aureus - enzymology</subject><subject>Staphylococcus aureus - genetics</subject><subject>π-bulge</subject><issn>0022-2836</issn><issn>1089-8638</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkE2LFDEURYMoTjv6A9xIrdxV-5KqpBNcyYzONIwo-LENqeRF0lQlbZJq6H9vtd3gboQLd3PuXRxCXlNYU6Di3W69m4Y1A5DrUxg8ISsKUrVSdPIpWQEw1jLZiSvyopQdAPCul8_JFZUbAUzyFfm5dRhr8MGaGlJskm9uj9FMwTbfap5tnbMZm89pQUqzjYc0HtA1ITZfcV-DS7_GozWxuVsqleNYs4nFY35JnnkzFnx16Wvy49PH7zf37cOXu-3Nh4fW9r2srZM9DINXvEfOOq4s9P0AnslBbGAQivlOCr5xm94jF51C7xRXTnXCmwX13TV5e_7d5_R7xlL1FIrFcTQR01y0UFwKyth_QQZ0kfMXpGfQ5lRKRq_3OUwmHzUFfbKud3qxrk_W9SkMls2by_k8TOj-LS6aF-D9GcDFxSFg1sUGjBZdyGirdik8cv8H_ayTAA</recordid><startdate>20081031</startdate><enddate>20081031</enddate><creator>Lovering, Andrew L.</creator><creator>De Castro, Liza</creator><creator>Strynadka, Natalie C.J.</creator><general>Elsevier Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7QL</scope><scope>C1K</scope><scope>7X8</scope></search><sort><creationdate>20081031</creationdate><title>Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer</title><author>Lovering, Andrew L. ; De Castro, Liza ; Strynadka, Natalie C.J.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>Amino Acid Motifs</topic><topic>Amino Acid Sequence</topic><topic>Base Sequence</topic><topic>Catalytic Domain</topic><topic>crystal structure</topic><topic>Crystallography, X-Ray</topic><topic>DNA Primers - genetics</topic><topic>glycosyltransferase</topic><topic>Ligands</topic><topic>Models, Molecular</topic><topic>Molecular Sequence Data</topic><topic>penicillin</topic><topic>peptidoglycan</topic><topic>Peptidoglycan - biosynthesis</topic><topic>Peptidoglycan Glycosyltransferase - chemistry</topic><topic>Peptidoglycan Glycosyltransferase - genetics</topic><topic>Peptidoglycan Glycosyltransferase - metabolism</topic><topic>Protein Structure, Tertiary</topic><topic>Recombinant Proteins - chemistry</topic><topic>Recombinant Proteins - genetics</topic><topic>Recombinant Proteins - metabolism</topic><topic>Sequence Homology, Amino Acid</topic><topic>Staphylococcus aureus</topic><topic>Staphylococcus aureus - enzymology</topic><topic>Staphylococcus aureus - genetics</topic><topic>π-bulge</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Lovering, Andrew L.</creatorcontrib><creatorcontrib>De Castro, Liza</creatorcontrib><creatorcontrib>Strynadka, Natalie C.J.</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Environmental Sciences and Pollution Management</collection><collection>MEDLINE - Academic</collection><jtitle>Journal of molecular biology</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Lovering, Andrew L.</au><au>De Castro, Liza</au><au>Strynadka, Natalie C.J.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer</atitle><jtitle>Journal of molecular biology</jtitle><addtitle>J Mol Biol</addtitle><date>2008-10-31</date><risdate>2008</risdate><volume>383</volume><issue>1</issue><spage>167</spage><epage>177</epage><pages>167-177</pages><issn>0022-2836</issn><eissn>1089-8638</eissn><abstract>We have determined the structure of a new form of the bifunctional peptidoglycan glycosyltransferase (GT)/transpeptidase penicillin-binding protein 2 from the pathogen Staphylococcus aureus. We observe several previously unstructured regions of the GT substrate-binding pockets, including a π-bulge in the outer helix that may be responsible for the conformational flexibility of active-site motifs required for transfer of product to the donor binding site during processive rounds of peptidoglycan polymerization. The identification of a β-hairpin in the usually unstructured region of the fold shares local structural homology to that of an exomuramidase, heightening comparisons between this biosynthetic enzyme and lytic peptidoglycan transglycosylases. This new form also shows remarkable interdomain flexibility, causing the linker region of the fold to project into the GT active site. This self-interaction may have significant consequences for the regulation of polymerization activity. The derived information is used to build a catalytic model of both donor and acceptor glycolipid substrates.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>18760285</pmid><doi>10.1016/j.jmb.2008.08.020</doi><tpages>11</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0022-2836
ispartof Journal of molecular biology, 2008-10, Vol.383 (1), p.167-177
issn 0022-2836
1089-8638
language eng
recordid cdi_proquest_miscellaneous_69586122
source Elsevier
subjects Amino Acid Motifs
Amino Acid Sequence
Base Sequence
Catalytic Domain
crystal structure
Crystallography, X-Ray
DNA Primers - genetics
glycosyltransferase
Ligands
Models, Molecular
Molecular Sequence Data
penicillin
peptidoglycan
Peptidoglycan - biosynthesis
Peptidoglycan Glycosyltransferase - chemistry
Peptidoglycan Glycosyltransferase - genetics
Peptidoglycan Glycosyltransferase - metabolism
Protein Structure, Tertiary
Recombinant Proteins - chemistry
Recombinant Proteins - genetics
Recombinant Proteins - metabolism
Sequence Homology, Amino Acid
Staphylococcus aureus
Staphylococcus aureus - enzymology
Staphylococcus aureus - genetics
π-bulge
title Identification of Dynamic Structural Motifs Involved in Peptidoglycan Glycosyltransfer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-12T23%3A22%3A40IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Identification%20of%20Dynamic%20Structural%20Motifs%20Involved%20in%20Peptidoglycan%20Glycosyltransfer&rft.jtitle=Journal%20of%20molecular%20biology&rft.au=Lovering,%20Andrew%20L.&rft.date=2008-10-31&rft.volume=383&rft.issue=1&rft.spage=167&rft.epage=177&rft.pages=167-177&rft.issn=0022-2836&rft.eissn=1089-8638&rft_id=info:doi/10.1016/j.jmb.2008.08.020&rft_dat=%3Cproquest_cross%3E69586122%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c448t-d840bbf954e52359c044b0f28b670b692f38657d74fe5639efd959d936fa044f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=20105322&rft_id=info:pmid/18760285&rfr_iscdi=true