Loading…
Freeze drying of human serum albumin (HSA) nanoparticles with different excipients
Freeze drying is a suitable technique to improve the long-term storage stability of colloidal drug carrier systems such as nanoparticles. Aim of this study was to systematically evaluate excipients for the freeze drying and long-term stability of albumin-based nanoparticles. In our study, nanopartic...
Saved in:
Published in: | International journal of pharmaceutics 2008-11, Vol.363 (1), p.162-169 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Freeze drying is a suitable technique to improve the long-term storage stability of colloidal drug carrier systems such as nanoparticles. Aim of this study was to systematically evaluate excipients for the freeze drying and long-term stability of albumin-based nanoparticles. In our study, nanoparticles made of human serum albumin (HSA) were freeze dried in the presence of different cryoprotective agents and after reconstitution were evaluated with regard to their physico-chemical characteristics. Empty, doxorubicin-loaded, and PEGylated nanoparticles were prepared and were freeze dried in the presence of different concentrations of sucrose, trehalose, and mannitol, respectively. The samples were physico-chemically characterised with regard to lyophilisate appearance, particle size, and polydispersity using photon correlation spectroscopy. For evaluation of long-term stability, the samples were stored at 2–8, 25, and 40
°C over predetermined time intervals. In the absence of cryoprotectants, particle growth was observed in all freeze-dried formulations. In the presence of sucrose, mannitol, and trehalose aggregation of HSA nanoparticles during the freeze-drying procedure was prevented. Although all of the excipients were identified to be suitable stabilisers for freeze drying of HSA nanoparticles, sucrose and trehalose were superior to mannitol, especially with regard to the long-term storage stability results. |
---|---|
ISSN: | 0378-5173 1873-3476 |
DOI: | 10.1016/j.ijpharm.2008.07.004 |