Loading…

Extracellular pH change modulates the exon 7 splicing in SMN2 mRNA

Spinal muscular atrophy (SMA) is caused by homozygous deletions/mutations of SMN1 gene. All SMA patients carry a nearly identical SMN2 gene. A nucleotide change in SMN2 results in exon 7 exclusion in the majority of SMN2 mRNA, thus producing low level of SMN protein. Extracellular pH change has been...

Full description

Saved in:
Bibliographic Details
Published in:Molecular and cellular neuroscience 2008-10, Vol.39 (2), p.268-272
Main Authors: Chen, Yi-Ching, Yuo, Chung-Yee, Yang, Wen-Kuang, Jong, Yuh-Jyh, Lin, Hui-Hua, Chang, Ya-Sian, Chang, Jan-Gowth
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Spinal muscular atrophy (SMA) is caused by homozygous deletions/mutations of SMN1 gene. All SMA patients carry a nearly identical SMN2 gene. A nucleotide change in SMN2 results in exon 7 exclusion in the majority of SMN2 mRNA, thus producing low level of SMN protein. Extracellular pH change has been shown to modulate alternative splicing of several pre-mRNAs. In this study, we showed that extracellular pH change can also modulate SMN2 exon 7 splicing in SMA cells. Low extracellular pH enhances SMN2 exon 7 skipping, whereas high extracellular pH promotes its inclusion. Low extracellular pH also reduces SMN protein expression but increases hnRNP A1 expression. In addition, we tested whether intracellular pH-modulating genes could be the modifier of SMA in a SMA discordant family and found that the mRNA levels of ATP6V1B2 gene are significantly higher in two affected siblings than the unaffected one. In conclusion, our results suggest that extracellular pH change modulates SMN2 exon 7 splicing through regulation of hnRNP A1 expression in SMA cells.
ISSN:1044-7431
1095-9327
DOI:10.1016/j.mcn.2008.07.002