Loading…

Relationship in humans between spontaneously chosen crank rate and power output during upper body exercise at different levels of intensity

The aim of this study was to assess the relationship between spontaneously chosen crank rate (SCCR) and power output during two upper body exercise tests: firstly, an incremental maximal aerobic power test (T1), with an initial intensity of 50 W followed by 15-W increases at each subsequent 90-s sta...

Full description

Saved in:
Bibliographic Details
Published in:European journal of applied physiology and occupational physiology 1999-02, Vol.79 (3), p.230-236
Main Authors: WEISSLAND, T, MARAIS, G, ROBIN, H, VANVELCENAHER, J, PELAYO, P
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The aim of this study was to assess the relationship between spontaneously chosen crank rate (SCCR) and power output during two upper body exercise tests: firstly, an incremental maximal aerobic power test (T1), with an initial intensity of 50 W followed by 15-W increases at each subsequent 90-s stage and secondly, a test (T2) with consecutive exercise periods set at 50%, 60%, 70%, 80%, 110% and 120% of maximal power (Pmax) separated by passive recovery periods. Eight nationally and internationally ranked kayakers, aged 20 (SD 2) years, performed the tests. During both T1 and T2, mean SCCR values were correlated (r = 1) and increased significantly (P < 0.05) in association with the increases in power output. The finding that the subjects consistently increased their crank rate as the power output increased in different tests, i.e. at submaximal, maximal and supramaximal intensities, strongly suggests that SCCR depended on power output and not on the type of exercise (incremental or rectangular exercise). Moreover, the equation relating crank rate and power output determined from T1 suggests that it may be used to predict the crank rate which will be chosen in upper body exercise, whatever the intensity. Finally, the results of testing at 110% and 120% of Pmax would suggest that a high crank rate (>90 rpm) should be used during the test procedure using supramaximal exercises where accumulated oxygen deficit is calculated, and more particularly when exercise is performed using the upper body.
ISSN:0301-5548
1432-1025
DOI:10.1007/s004210050500