Loading…

Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests

In spite of numerous publications on potential diagnostic application of circulating DNA and transrenal nucleic acid (Tr‐NA) analysis, few, if any, tests based on this technology are available in clinical labs. This delay in test development and implementation is caused, at least in part, by the def...

Full description

Saved in:
Bibliographic Details
Published in:Annals of the New York Academy of Sciences 2008-08, Vol.1137 (1), p.73-81
Main Authors: Melkonyan, Hovsep S., Feaver, W. John, Meyer, Erik, Scheinker, Vladimir, Shekhtman, Eugene M., Xin, Zhenghan, Umansky, Samuil R.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c2845-8c5c31045d420896b8c57b312b232ec36e02ede2533a1a6590f2f4bbd923c2db3
cites
container_end_page 81
container_issue 1
container_start_page 73
container_title Annals of the New York Academy of Sciences
container_volume 1137
creator Melkonyan, Hovsep S.
Feaver, W. John
Meyer, Erik
Scheinker, Vladimir
Shekhtman, Eugene M.
Xin, Zhenghan
Umansky, Samuil R.
description In spite of numerous publications on potential diagnostic application of circulating DNA and transrenal nucleic acid (Tr‐NA) analysis, few, if any, tests based on this technology are available in clinical labs. This delay in test development and implementation is caused, at least in part, by the deficit in robust methods for isolation of short nucleic acid fragments from bodily fluids, as well as in techniques for analyzing these fragments. We have developed a new anion exchanger‐based method for the isolation of cell‐free nucleic acid fragments from large volumes of bodily fluids, and analyzed these fragments by PCR techniques specially designed to amplify “ultrashort” templates. The combination of these two techniques not only revealed the presence in urine of 10–150 bases or bp DNA and RNA fragments in addition to previously observed 150–200‐bp DNA fragments and high molecular weight DNA, but also significantly increased the sensitivity of Tr‐DNA detection. Additionally, we detected in urine a variety of miRNAs, including those excreted transrenally, thereby opening new diagnostic possibilities for Tr‐NA analysis.
doi_str_mv 10.1196/annals.1448.015
format article
fullrecord <record><control><sourceid>proquest_pubme</sourceid><recordid>TN_cdi_proquest_miscellaneous_69638688</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69638688</sourcerecordid><originalsourceid>FETCH-LOGICAL-c2845-8c5c31045d420896b8c57b312b232ec36e02ede2533a1a6590f2f4bbd923c2db3</originalsourceid><addsrcrecordid>eNqFkM1LwzAYh4Mobk7P3qQnb535apJ6G8VNYc7BpqKXkKYpRLt2Jiu6_96MTj0KgYTk-b1v3geAcwSHCKXsStW1qvwQUSqGECUHoI84TWPGCD4EfQg5j0WKSQ-ceP8GIcKC8mPQQ0IQnmLRB9nSqdo7E8pEs1ZXxupopG3hr6Oxa1bR3DVNGYU1d7bWdl2ZaNNEWWVrq0NkafzGn4KjMvzCnO33AXgc3yyz23j6MLnLRtNYh7ZJLHSiCYI0KSiGImV5uOA5QTjHBBtNmIHYFAYnhCikWJLCEpc0z4swgMZFTgbgsqu7ds1HGzrLlfXaVJWqTdN6yVJGBAuj_QdihCmDDAXwYg-2-coUcu3sSrmt_PETANEBn7Yy2793KHf6Zadf7vTLoF_OXkYLhAgP5xCNu6j1G_P1G1XuXTJOeCKfZxPJXvFizvi9fCLfIDqHCg</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>21246061</pqid></control><display><type>article</type><title>Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests</title><source>Wiley</source><creator>Melkonyan, Hovsep S. ; Feaver, W. John ; Meyer, Erik ; Scheinker, Vladimir ; Shekhtman, Eugene M. ; Xin, Zhenghan ; Umansky, Samuil R.</creator><creatorcontrib>Melkonyan, Hovsep S. ; Feaver, W. John ; Meyer, Erik ; Scheinker, Vladimir ; Shekhtman, Eugene M. ; Xin, Zhenghan ; Umansky, Samuil R.</creatorcontrib><description>In spite of numerous publications on potential diagnostic application of circulating DNA and transrenal nucleic acid (Tr‐NA) analysis, few, if any, tests based on this technology are available in clinical labs. This delay in test development and implementation is caused, at least in part, by the deficit in robust methods for isolation of short nucleic acid fragments from bodily fluids, as well as in techniques for analyzing these fragments. We have developed a new anion exchanger‐based method for the isolation of cell‐free nucleic acid fragments from large volumes of bodily fluids, and analyzed these fragments by PCR techniques specially designed to amplify “ultrashort” templates. The combination of these two techniques not only revealed the presence in urine of 10–150 bases or bp DNA and RNA fragments in addition to previously observed 150–200‐bp DNA fragments and high molecular weight DNA, but also significantly increased the sensitivity of Tr‐DNA detection. Additionally, we detected in urine a variety of miRNAs, including those excreted transrenally, thereby opening new diagnostic possibilities for Tr‐NA analysis.</description><identifier>ISSN: 0077-8923</identifier><identifier>EISSN: 1749-6632</identifier><identifier>EISSN: 1930-6547</identifier><identifier>DOI: 10.1196/annals.1448.015</identifier><identifier>PMID: 18837928</identifier><language>eng</language><publisher>Malden, USA: Blackwell Publishing Inc</publisher><subject>amplification target size ; Base Sequence ; Body Fluids - chemistry ; Diagnostic Techniques and Procedures ; DNA - blood ; DNA - chemistry ; DNA - genetics ; DNA - urine ; DNA purification ; Female ; Humans ; Kidney - metabolism ; Male ; MicroRNAs - genetics ; MicroRNAs - urine ; miRNA ; Molecular Weight ; PCR ; Prokaryotic Cells ; RNA purification ; Templates, Genetic ; Tr-DNA ; Tr-RNA ; transrenal DNA ; transrenal RNA ; urine</subject><ispartof>Annals of the New York Academy of Sciences, 2008-08, Vol.1137 (1), p.73-81</ispartof><rights>2008 New York Academy of Sciences</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c2845-8c5c31045d420896b8c57b312b232ec36e02ede2533a1a6590f2f4bbd923c2db3</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,778,782,27907,27908</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/18837928$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Melkonyan, Hovsep S.</creatorcontrib><creatorcontrib>Feaver, W. John</creatorcontrib><creatorcontrib>Meyer, Erik</creatorcontrib><creatorcontrib>Scheinker, Vladimir</creatorcontrib><creatorcontrib>Shekhtman, Eugene M.</creatorcontrib><creatorcontrib>Xin, Zhenghan</creatorcontrib><creatorcontrib>Umansky, Samuil R.</creatorcontrib><title>Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests</title><title>Annals of the New York Academy of Sciences</title><addtitle>Ann N Y Acad Sci</addtitle><description>In spite of numerous publications on potential diagnostic application of circulating DNA and transrenal nucleic acid (Tr‐NA) analysis, few, if any, tests based on this technology are available in clinical labs. This delay in test development and implementation is caused, at least in part, by the deficit in robust methods for isolation of short nucleic acid fragments from bodily fluids, as well as in techniques for analyzing these fragments. We have developed a new anion exchanger‐based method for the isolation of cell‐free nucleic acid fragments from large volumes of bodily fluids, and analyzed these fragments by PCR techniques specially designed to amplify “ultrashort” templates. The combination of these two techniques not only revealed the presence in urine of 10–150 bases or bp DNA and RNA fragments in addition to previously observed 150–200‐bp DNA fragments and high molecular weight DNA, but also significantly increased the sensitivity of Tr‐DNA detection. Additionally, we detected in urine a variety of miRNAs, including those excreted transrenally, thereby opening new diagnostic possibilities for Tr‐NA analysis.</description><subject>amplification target size</subject><subject>Base Sequence</subject><subject>Body Fluids - chemistry</subject><subject>Diagnostic Techniques and Procedures</subject><subject>DNA - blood</subject><subject>DNA - chemistry</subject><subject>DNA - genetics</subject><subject>DNA - urine</subject><subject>DNA purification</subject><subject>Female</subject><subject>Humans</subject><subject>Kidney - metabolism</subject><subject>Male</subject><subject>MicroRNAs - genetics</subject><subject>MicroRNAs - urine</subject><subject>miRNA</subject><subject>Molecular Weight</subject><subject>PCR</subject><subject>Prokaryotic Cells</subject><subject>RNA purification</subject><subject>Templates, Genetic</subject><subject>Tr-DNA</subject><subject>Tr-RNA</subject><subject>transrenal DNA</subject><subject>transrenal RNA</subject><subject>urine</subject><issn>0077-8923</issn><issn>1749-6632</issn><issn>1930-6547</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2008</creationdate><recordtype>article</recordtype><recordid>eNqFkM1LwzAYh4Mobk7P3qQnb535apJ6G8VNYc7BpqKXkKYpRLt2Jiu6_96MTj0KgYTk-b1v3geAcwSHCKXsStW1qvwQUSqGECUHoI84TWPGCD4EfQg5j0WKSQ-ceP8GIcKC8mPQQ0IQnmLRB9nSqdo7E8pEs1ZXxupopG3hr6Oxa1bR3DVNGYU1d7bWdl2ZaNNEWWVrq0NkafzGn4KjMvzCnO33AXgc3yyz23j6MLnLRtNYh7ZJLHSiCYI0KSiGImV5uOA5QTjHBBtNmIHYFAYnhCikWJLCEpc0z4swgMZFTgbgsqu7ds1HGzrLlfXaVJWqTdN6yVJGBAuj_QdihCmDDAXwYg-2-coUcu3sSrmt_PETANEBn7Yy2793KHf6Zadf7vTLoF_OXkYLhAgP5xCNu6j1G_P1G1XuXTJOeCKfZxPJXvFizvi9fCLfIDqHCg</recordid><startdate>200808</startdate><enddate>200808</enddate><creator>Melkonyan, Hovsep S.</creator><creator>Feaver, W. John</creator><creator>Meyer, Erik</creator><creator>Scheinker, Vladimir</creator><creator>Shekhtman, Eugene M.</creator><creator>Xin, Zhenghan</creator><creator>Umansky, Samuil R.</creator><general>Blackwell Publishing Inc</general><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>7TM</scope><scope>7X8</scope></search><sort><creationdate>200808</creationdate><title>Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests</title><author>Melkonyan, Hovsep S. ; Feaver, W. John ; Meyer, Erik ; Scheinker, Vladimir ; Shekhtman, Eugene M. ; Xin, Zhenghan ; Umansky, Samuil R.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c2845-8c5c31045d420896b8c57b312b232ec36e02ede2533a1a6590f2f4bbd923c2db3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2008</creationdate><topic>amplification target size</topic><topic>Base Sequence</topic><topic>Body Fluids - chemistry</topic><topic>Diagnostic Techniques and Procedures</topic><topic>DNA - blood</topic><topic>DNA - chemistry</topic><topic>DNA - genetics</topic><topic>DNA - urine</topic><topic>DNA purification</topic><topic>Female</topic><topic>Humans</topic><topic>Kidney - metabolism</topic><topic>Male</topic><topic>MicroRNAs - genetics</topic><topic>MicroRNAs - urine</topic><topic>miRNA</topic><topic>Molecular Weight</topic><topic>PCR</topic><topic>Prokaryotic Cells</topic><topic>RNA purification</topic><topic>Templates, Genetic</topic><topic>Tr-DNA</topic><topic>Tr-RNA</topic><topic>transrenal DNA</topic><topic>transrenal RNA</topic><topic>urine</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melkonyan, Hovsep S.</creatorcontrib><creatorcontrib>Feaver, W. John</creatorcontrib><creatorcontrib>Meyer, Erik</creatorcontrib><creatorcontrib>Scheinker, Vladimir</creatorcontrib><creatorcontrib>Shekhtman, Eugene M.</creatorcontrib><creatorcontrib>Xin, Zhenghan</creatorcontrib><creatorcontrib>Umansky, Samuil R.</creatorcontrib><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>Nucleic Acids Abstracts</collection><collection>MEDLINE - Academic</collection><jtitle>Annals of the New York Academy of Sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melkonyan, Hovsep S.</au><au>Feaver, W. John</au><au>Meyer, Erik</au><au>Scheinker, Vladimir</au><au>Shekhtman, Eugene M.</au><au>Xin, Zhenghan</au><au>Umansky, Samuil R.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests</atitle><jtitle>Annals of the New York Academy of Sciences</jtitle><addtitle>Ann N Y Acad Sci</addtitle><date>2008-08</date><risdate>2008</risdate><volume>1137</volume><issue>1</issue><spage>73</spage><epage>81</epage><pages>73-81</pages><issn>0077-8923</issn><eissn>1749-6632</eissn><eissn>1930-6547</eissn><abstract>In spite of numerous publications on potential diagnostic application of circulating DNA and transrenal nucleic acid (Tr‐NA) analysis, few, if any, tests based on this technology are available in clinical labs. This delay in test development and implementation is caused, at least in part, by the deficit in robust methods for isolation of short nucleic acid fragments from bodily fluids, as well as in techniques for analyzing these fragments. We have developed a new anion exchanger‐based method for the isolation of cell‐free nucleic acid fragments from large volumes of bodily fluids, and analyzed these fragments by PCR techniques specially designed to amplify “ultrashort” templates. The combination of these two techniques not only revealed the presence in urine of 10–150 bases or bp DNA and RNA fragments in addition to previously observed 150–200‐bp DNA fragments and high molecular weight DNA, but also significantly increased the sensitivity of Tr‐DNA detection. Additionally, we detected in urine a variety of miRNAs, including those excreted transrenally, thereby opening new diagnostic possibilities for Tr‐NA analysis.</abstract><cop>Malden, USA</cop><pub>Blackwell Publishing Inc</pub><pmid>18837928</pmid><doi>10.1196/annals.1448.015</doi><tpages>9</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0077-8923
ispartof Annals of the New York Academy of Sciences, 2008-08, Vol.1137 (1), p.73-81
issn 0077-8923
1749-6632
1930-6547
language eng
recordid cdi_proquest_miscellaneous_69638688
source Wiley
subjects amplification target size
Base Sequence
Body Fluids - chemistry
Diagnostic Techniques and Procedures
DNA - blood
DNA - chemistry
DNA - genetics
DNA - urine
DNA purification
Female
Humans
Kidney - metabolism
Male
MicroRNAs - genetics
MicroRNAs - urine
miRNA
Molecular Weight
PCR
Prokaryotic Cells
RNA purification
Templates, Genetic
Tr-DNA
Tr-RNA
transrenal DNA
transrenal RNA
urine
title Transrenal Nucleic Acids: From Proof of Principle to Clinical Tests
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-16T14%3A10%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_pubme&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Transrenal%20Nucleic%20Acids:%20From%20Proof%20of%20Principle%20to%20Clinical%20Tests&rft.jtitle=Annals%20of%20the%20New%20York%20Academy%20of%20Sciences&rft.au=Melkonyan,%20Hovsep%20S.&rft.date=2008-08&rft.volume=1137&rft.issue=1&rft.spage=73&rft.epage=81&rft.pages=73-81&rft.issn=0077-8923&rft.eissn=1749-6632&rft_id=info:doi/10.1196/annals.1448.015&rft_dat=%3Cproquest_pubme%3E69638688%3C/proquest_pubme%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c2845-8c5c31045d420896b8c57b312b232ec36e02ede2533a1a6590f2f4bbd923c2db3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=21246061&rft_id=info:pmid/18837928&rfr_iscdi=true