Loading…

Carbon nanotube/gold nanoparticles/polyethylenimine-functionalized ionic liquid thin film composites for glucose biosensing

A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemi...

Full description

Saved in:
Bibliographic Details
Published in:Biosensors & bioelectronics 2008-12, Vol.24 (4), p.945-950
Main Authors: Jia, Fei, Shan, Changsheng, Li, Fenghua, Niu, Li
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A novel glucose biosensor based on immobilization of glucose oxidase (GOD) in thin films of polyethylenimine-functionalized ionic liquid (PFIL), containing a mixture of carbon nanotubes (CNT) and gold nanoparticles (AuNPs) and deposited on glassy carbon electrodes, was developed. Direct electrochemistry of glucose oxidase in the film was observed, with linear glucose response up to 12 mM. The PFIL-stabilized gold nanoparticles had a diameter of 2.4 ± 0.8 nm and exhibited favorable stability (stored even over one month with invisible change in UV–vis spectroscopic measurements). In addition, CNT were also well dispersed in the PFIL matrix, then, the resulting CNT/AuNPs/PFIL composites film showed high electrocatalytic activity toward reduction of hydrogen peroxide and oxygen. Here, PFIL, due to its high ionic conductivity, good solubility to CNT, and stability to nanoparticles, played an important role in constructing stable CNT/AuNPs/PFIL/GOD composites. And good biocompatibility of PFIL also offered a friendly environment for the immobilization of biomolecules.
ISSN:0956-5663
1873-4235
DOI:10.1016/j.bios.2008.07.057