Loading…

Conditions That Diminish Myeloid-Derived Suppressor Cell Activities Stimulate Cross-Protective Immunity

Immunity conferred by conventional vaccines is restricted to a narrow range of closely related strains, highlighting the unmet medical need for the development of vaccines that elicit protection against multiple pathogenic serotypes. Here we show that a Salmonella bivalent vaccine comprised of strai...

Full description

Saved in:
Bibliographic Details
Published in:Infection and Immunity 2008-11, Vol.76 (11), p.5191-5199
Main Authors: Heithoff, Douglas M, Enioutina, Elena Y, Bareyan, Diana, Daynes, Raymond A, Mahan, Michael J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Immunity conferred by conventional vaccines is restricted to a narrow range of closely related strains, highlighting the unmet medical need for the development of vaccines that elicit protection against multiple pathogenic serotypes. Here we show that a Salmonella bivalent vaccine comprised of strains that lack and overproduce DNA adenine methylase (Dam) conferred cross-protective immunity to salmonella clinical isolates of human and animal origin. Protective immunity directly correlated with increased levels of cross-reactive opsonizing antibodies and memory T cells and a diminished expansion of myeloid-derived suppressor cells (MDSCs) that are responsible for the immune suppression linked to several conditions of host stress, including chronic microbial infections, traumatic insults, and many forms of cancer. Further, aged mice contained increased numbers of MDSCs and were more susceptible to Salmonella infection than young mice, suggesting a role for these cells in the immune declines associated with the natural aging process. These data suggest that interventions capable of reducing MDSC presence and activities may allow corresponding increases in B- and T-cell stimulation and benefit the ability of immunologically diverse populations to be effectively vaccinated as well as reducing the risk of susceptible individuals to infectious disease.
ISSN:0019-9567
1098-5522
DOI:10.1128/IAI.00759-08