Loading…

Rewritable remote encoding and decoding of miniature multi-bit magnetic tags for high-throughput biological analysis

We have investigated a new magnetic labelling technology for high-throughput biomolecular identification and DNA sequencing. Planar multi-bit magnetic tags comprising a magnetic barcode formed by an ensemble of micron-sized thin film ferromagnetic Co bars and a 15 x 15 micron Au square for immobiliz...

Full description

Saved in:
Bibliographic Details
Published in:Lab on a chip 2008-01, Vol.8 (11), p.1883-1887
Main Authors: Jeong, J-R, Llandro, J, Hong, Bingyan, Hayward, T J, Mitrelias, T, Kopper, K P, Trypiniotis, T, Steinmuller, S J, Simpson, G K, Bland, J A C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We have investigated a new magnetic labelling technology for high-throughput biomolecular identification and DNA sequencing. Planar multi-bit magnetic tags comprising a magnetic barcode formed by an ensemble of micron-sized thin film ferromagnetic Co bars and a 15 x 15 micron Au square for immobilization of probe molecules have been designed and fabricated. We show that by using a globally applied magnetic field and magneto-optical Kerr microscopy the magnetic elements in the multi-bit magnetic tags can be addressed individually and encoded/decoded remotely. The power of the approach is the read/write technique, which allows modest globally applied magnetic fields to write almost unlimited numbers of codes to populations of tags rather than individuals. The magnetic nature of the technology also lends itself naturally to fast, remote decoding and the ability to rewrite tags if needed. We demonstrate the critical steps needed to show the feasibility of this technology, including fabrication, remote writing and reading, and successful functionalization of the tags as verified by fluorescence detection. This approach is ideal for encoding information on tags in microfluidic flow or suspension, in order to label oligonucleotides during split-and-mix synthesis, and for combinatorial library-based high-throughput multiplexed bioassays.
ISSN:1473-0197
1473-0189
DOI:10.1039/b807632d