Loading…

Effect of hypoxia and hypoxia/reoxygenation on proteoglycan metabolism by vascular smooth muscle cells

Hypoxia and hypoxia/reoxygenation are known to affect vascular smooth muscle cell physiology. In this study, we first investigated proteoglycan synthesis by human aortic smooth muscle cells exposed to normoxia, hypoxia, or hypoxia/reoxygenation. We then compared the newly synthesized proteoglycans f...

Full description

Saved in:
Bibliographic Details
Published in:Atherosclerosis 1999-03, Vol.143 (1), p.135-144
Main Authors: Figueroa, Julio E., Tao, Zhuo, Sarphie, Theodore G., Smart, Frank W., Glancy, D.Luke, Vijayagopal, Parakat
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Hypoxia and hypoxia/reoxygenation are known to affect vascular smooth muscle cell physiology. In this study, we first investigated proteoglycan synthesis by human aortic smooth muscle cells exposed to normoxia, hypoxia, or hypoxia/reoxygenation. We then compared the newly synthesized proteoglycans from normoxic and hypoxic-reoxygenation cultures for their ability to bind low density lipoprotein (LDL). Confluent smooth muscle cells under normoxia, hypoxia, or hypoxia/reoxygenation were pulsed with [ 35S]sulfate, and secreted and cell-associated proteoglycans were analyzed. Secreted proteoglycans in cultures exposed to hypoxia (4 h)/reoxygenation (19 h) increased 28% over those of cells continuously exposed to normoxia. Cell-associated proteoglycans did not differ significantly between the two groups. In contrast, hypoxia (4 h) followed by a 30-min reoxygenation produced a 37% decrease in newly synthesized proteoglycans. Hypoxia alone also resulted in a 24% decrease in secreted proteoglycans and a 20% decrease in cell-associated proteoglycans. Proteoglycans newly synthesized by smooth muscle cells exposed to normoxia and hypoxia/reoxygenation did not differ in their charge densities and molecular size but did differ in glycosaminoglycan composition. Exposure of smooth muscle cells to hypoxia/reoxygenation produced a 60% increase in a proteoglycan subfraction that bound LDL with very high affinity. The incorporation of [ 3H]leucine into total cellular protein decreased significantly following exposure of smooth muscle cells to hypoxia as well as hypoxia/reoxygenation. These results indicate that hypoxia and hypoxia/reoxygenation cause major alterations in proteoglycan metabolism by vascular smooth muscle cells.
ISSN:0021-9150
1879-1484
DOI:10.1016/S0021-9150(98)00292-5