Loading…

Effect of the Addition of Fumarate on Methane Production by Ruminal Microorganisms In Vitro

The effect of fumarate used as a feed additive on the reduction of methanogenesis in the rumen was evaluated by in vitro experiments. The addition of fumarate to the culture of mixed ruminal microorganisms that were fermenting hay powder and concentrate reduced methane production. Most fumarate was...

Full description

Saved in:
Bibliographic Details
Published in:Journal of dairy science 1999-04, Vol.82 (4), p.780-787
Main Authors: Asanuma, Narito, Iwamoto, Miwa, Hino, Tsuneo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The effect of fumarate used as a feed additive on the reduction of methanogenesis in the rumen was evaluated by in vitro experiments. The addition of fumarate to the culture of mixed ruminal microorganisms that were fermenting hay powder and concentrate reduced methane production. Most fumarate was metabolized to propionate, and a slight increase was noted in other volatile fatty acids. Fumarate was utilized by mixed bacteria but not by mixed protozoa. Fibrobacter succinogenes, Selenomonas ruminantium ssp. ruminantium, Selenomonas ruminantium ssp. lactilytica, Veillonella parvula, and Wollinella succinogenes oxidized H2 by using fumarate as a final electron acceptor, suggesting that these bacteria compete with methanogens for H2, which is the main substrate for methanogenesis in the rumen. However, the affinity of these bacteria to H2 was lower than their affinity to methanogens. These fumarate-utilizing bacteria metabolized malate to products that were similar to those from fumarate, suggesting the possession of fumarate dehydratase. Fibrobacter succinogenes, V. parvula, and W. succinogenes utilized formate, another substrate for methanogenesis, as an electron donor for fumarate reduction. The affinity of these bacteria to formate was higher than the affinity methanogens have for formate. When methanogens were cocultured with an equal cellular amount of each of the fumarate-utilizing bacteria, methane production was markedly decreased, not only from formate, but also from H2. These results suggest that the addition of fumarate to ruminant feed reduces methanogenesis and enhances propionate production in the rumen.
ISSN:0022-0302
1525-3198
DOI:10.3168/jds.S0022-0302(99)75296-3