Loading…
Evolving Concepts of Cardiac Valve Dynamics : The Continuum of Development, Functional Structure, Pathobiology, and Tissue Engineering
Considerable progress has been made in recent years toward elucidating a conceptual framework that integrates the dynamic functional structure, mechanical properties, and pathobiological behavior of the cardiac valves. This communication reviews the evolving paradigm of a continuum of heart valve st...
Saved in:
Published in: | Circulation (New York, N.Y.) N.Y.), 2008-10, Vol.118 (18), p.1864-1880 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Considerable progress has been made in recent years toward elucidating a conceptual framework that integrates the dynamic functional structure, mechanical properties, and pathobiological behavior of the cardiac valves. This communication reviews the evolving paradigm of a continuum of heart valve structure, function, and pathobiology and explores its implications. Specifically, we discuss (1) the interactions of valve biology and biomechanics (eg, correlations of function with structure at the cell, tissue, and organ levels and mechanical considerations, development, endothelial cell and interstitial cell biology, extracellular matrix biology, homeostasis, and adaptation to environmental change); (2) mechanisms of disease (eg, valve cell and matrix pathobiology in congenital anomalies, aortic valve calcification, and mitral valve prolapse); (3) considerations in replacement and repair (eg, cell/matrix biology of tissue valve substitutes and their degeneration and durability of repairs); and (4) the potential for tissue engineering approaches to therapeutic regeneration of the cardiac valves. Opportunities for research and clinical translation are highlighted. |
---|---|
ISSN: | 0009-7322 1524-4539 |
DOI: | 10.1161/CIRCULATIONAHA.108.805911 |