Loading…
Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c
Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do...
Saved in:
Published in: | Biochemistry (Easton) 1999-04, Vol.38 (17), p.5553-5562 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473 |
---|---|
cites | cdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473 |
container_end_page | 5562 |
container_issue | 17 |
container_start_page | 5553 |
container_title | Biochemistry (Easton) |
container_volume | 38 |
creator | Battistuzzi, Gianantonio Borsari, Marco Cowan, James A Eicken, Christoph Loschi, Lodovica Sola, Marco |
description | Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include: (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2. |
doi_str_mv | 10.1021/bi982429x |
format | article |
fullrecord | <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69728244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69728244</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</originalsourceid><addsrcrecordid>eNptkM9OFEEQhztGIit68AW0L5pwGOy_M9NHWFBJ1kBciNw6Pd3V0ji7Dd0zye4beOYReRKbDCEePFWq6qvKLx9C7yg5oITRz11QLRNMbV6gGZWMVEIp-RLNCCF1xVRNdtHrnG9KK0gjXqHdcsUIF3yGzn6Aixs8v4ZVyEPaYrN2-NAG9_Dn_shkwCd3Y-hDl4LB0ePvYYj2Oq5d6Xt83pv1gOfbx1mKK8jYvkE73vQZ3j7VPXT55eRi_q1anH09nR8uKsMbPlQUhLeOWuGk4LYBKhSTzsuadyCkqFvvwYKpOTjWNZ3xVtKuraV1XdmJhu-hT9Pf2xTvRsiDLvkt9CURxDHrWjWsOBEF3J9Am2LOCby-TWFl0lZToh_t6Wd7hX3_9HTsVuD-ISddBagmoLiCzfPepN-6bngj9cX5Uh8vro6vfi4Xmhb-w8R7E7X5lULWl0tGKCesVaoVbSE-ToSxWd_EMa2Ltf9E-wtYfZBN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69728244</pqid></control><display><type>article</type><title>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)</source><creator>Battistuzzi, Gianantonio ; Borsari, Marco ; Cowan, James A ; Eicken, Christoph ; Loschi, Lodovica ; Sola, Marco</creator><creatorcontrib>Battistuzzi, Gianantonio ; Borsari, Marco ; Cowan, James A ; Eicken, Christoph ; Loschi, Lodovica ; Sola, Marco</creatorcontrib><description>Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include: (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi982429x</identifier><identifier>PMID: 10220343</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acid-base balance ; Acid-Base Equilibrium ; Cucumis sativus ; cytochrome c ; Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; Electrochemistry ; Hydrogen-Ion Concentration ; Ipomoea batatas ; mitochondria ; Mitochondria - enzymology ; Nuclear Magnetic Resonance, Biomolecular ; Oxidation-Reduction ; Protons ; Solanaceae ; Spinacia oleracea ; Temperature ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 1999-04, Vol.38 (17), p.5553-5562</ispartof><rights>Copyright © 1999 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</citedby><cites>FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10220343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Battistuzzi, Gianantonio</creatorcontrib><creatorcontrib>Borsari, Marco</creatorcontrib><creatorcontrib>Cowan, James A</creatorcontrib><creatorcontrib>Eicken, Christoph</creatorcontrib><creatorcontrib>Loschi, Lodovica</creatorcontrib><creatorcontrib>Sola, Marco</creatorcontrib><title>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include: (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.</description><subject>acid-base balance</subject><subject>Acid-Base Equilibrium</subject><subject>Cucumis sativus</subject><subject>cytochrome c</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>Electrochemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ipomoea batatas</subject><subject>mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Oxidation-Reduction</subject><subject>Protons</subject><subject>Solanaceae</subject><subject>Spinacia oleracea</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkM9OFEEQhztGIit68AW0L5pwGOy_M9NHWFBJ1kBciNw6Pd3V0ji7Dd0zye4beOYReRKbDCEePFWq6qvKLx9C7yg5oITRz11QLRNMbV6gGZWMVEIp-RLNCCF1xVRNdtHrnG9KK0gjXqHdcsUIF3yGzn6Aixs8v4ZVyEPaYrN2-NAG9_Dn_shkwCd3Y-hDl4LB0ePvYYj2Oq5d6Xt83pv1gOfbx1mKK8jYvkE73vQZ3j7VPXT55eRi_q1anH09nR8uKsMbPlQUhLeOWuGk4LYBKhSTzsuadyCkqFvvwYKpOTjWNZ3xVtKuraV1XdmJhu-hT9Pf2xTvRsiDLvkt9CURxDHrWjWsOBEF3J9Am2LOCby-TWFl0lZToh_t6Wd7hX3_9HTsVuD-ISddBagmoLiCzfPepN-6bngj9cX5Uh8vro6vfi4Xmhb-w8R7E7X5lULWl0tGKCesVaoVbSE-ToSxWd_EMa2Ltf9E-wtYfZBN</recordid><startdate>19990427</startdate><enddate>19990427</enddate><creator>Battistuzzi, Gianantonio</creator><creator>Borsari, Marco</creator><creator>Cowan, James A</creator><creator>Eicken, Christoph</creator><creator>Loschi, Lodovica</creator><creator>Sola, Marco</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990427</creationdate><title>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</title><author>Battistuzzi, Gianantonio ; Borsari, Marco ; Cowan, James A ; Eicken, Christoph ; Loschi, Lodovica ; Sola, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>acid-base balance</topic><topic>Acid-Base Equilibrium</topic><topic>Cucumis sativus</topic><topic>cytochrome c</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>Electrochemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ipomoea batatas</topic><topic>mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Oxidation-Reduction</topic><topic>Protons</topic><topic>Solanaceae</topic><topic>Spinacia oleracea</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battistuzzi, Gianantonio</creatorcontrib><creatorcontrib>Borsari, Marco</creatorcontrib><creatorcontrib>Cowan, James A</creatorcontrib><creatorcontrib>Eicken, Christoph</creatorcontrib><creatorcontrib>Loschi, Lodovica</creatorcontrib><creatorcontrib>Sola, Marco</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battistuzzi, Gianantonio</au><au>Borsari, Marco</au><au>Cowan, James A</au><au>Eicken, Christoph</au><au>Loschi, Lodovica</au><au>Sola, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1999-04-27</date><risdate>1999</risdate><volume>38</volume><issue>17</issue><spage>5553</spage><epage>5562</epage><pages>5553-5562</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include: (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10220343</pmid><doi>10.1021/bi982429x</doi><tpages>10</tpages></addata></record> |
fulltext | fulltext |
identifier | ISSN: 0006-2960 |
ispartof | Biochemistry (Easton), 1999-04, Vol.38 (17), p.5553-5562 |
issn | 0006-2960 1520-4995 |
language | eng |
recordid | cdi_proquest_miscellaneous_69728244 |
source | American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list) |
subjects | acid-base balance Acid-Base Equilibrium Cucumis sativus cytochrome c Cytochrome c Group - chemistry Cytochrome c Group - metabolism Electrochemistry Hydrogen-Ion Concentration Ipomoea batatas mitochondria Mitochondria - enzymology Nuclear Magnetic Resonance, Biomolecular Oxidation-Reduction Protons Solanaceae Spinacia oleracea Temperature Thermodynamics |
title | Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20Chemistry%20and%20Acid%E2%88%92Base%20Equilibria%20of%20Mitochondrial%20Plant%20Cytochromes%20c&rft.jtitle=Biochemistry%20(Easton)&rft.au=Battistuzzi,%20Gianantonio&rft.date=1999-04-27&rft.volume=38&rft.issue=17&rft.spage=5553&rft.epage=5562&rft.pages=5553-5562&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi982429x&rft_dat=%3Cproquest_cross%3E69728244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69728244&rft_id=info:pmid/10220343&rfr_iscdi=true |