Loading…

Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c

Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do...

Full description

Saved in:
Bibliographic Details
Published in:Biochemistry (Easton) 1999-04, Vol.38 (17), p.5553-5562
Main Authors: Battistuzzi, Gianantonio, Borsari, Marco, Cowan, James A, Eicken, Christoph, Loschi, Lodovica, Sola, Marco
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473
cites cdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473
container_end_page 5562
container_issue 17
container_start_page 5553
container_title Biochemistry (Easton)
container_volume 38
creator Battistuzzi, Gianantonio
Borsari, Marco
Cowan, James A
Eicken, Christoph
Loschi, Lodovica
Sola, Marco
description Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include:  (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.
doi_str_mv 10.1021/bi982429x
format article
fullrecord <record><control><sourceid>proquest_cross</sourceid><recordid>TN_cdi_proquest_miscellaneous_69728244</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sourcerecordid>69728244</sourcerecordid><originalsourceid>FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</originalsourceid><addsrcrecordid>eNptkM9OFEEQhztGIit68AW0L5pwGOy_M9NHWFBJ1kBciNw6Pd3V0ji7Dd0zye4beOYReRKbDCEePFWq6qvKLx9C7yg5oITRz11QLRNMbV6gGZWMVEIp-RLNCCF1xVRNdtHrnG9KK0gjXqHdcsUIF3yGzn6Aixs8v4ZVyEPaYrN2-NAG9_Dn_shkwCd3Y-hDl4LB0ePvYYj2Oq5d6Xt83pv1gOfbx1mKK8jYvkE73vQZ3j7VPXT55eRi_q1anH09nR8uKsMbPlQUhLeOWuGk4LYBKhSTzsuadyCkqFvvwYKpOTjWNZ3xVtKuraV1XdmJhu-hT9Pf2xTvRsiDLvkt9CURxDHrWjWsOBEF3J9Am2LOCby-TWFl0lZToh_t6Wd7hX3_9HTsVuD-ISddBagmoLiCzfPepN-6bngj9cX5Uh8vro6vfi4Xmhb-w8R7E7X5lULWl0tGKCesVaoVbSE-ToSxWd_EMa2Ltf9E-wtYfZBN</addsrcrecordid><sourcetype>Aggregation Database</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>69728244</pqid></control><display><type>article</type><title>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</title><source>American Chemical Society:Jisc Collections:American Chemical Society Read &amp; Publish Agreement 2022-2024 (Reading list)</source><creator>Battistuzzi, Gianantonio ; Borsari, Marco ; Cowan, James A ; Eicken, Christoph ; Loschi, Lodovica ; Sola, Marco</creator><creatorcontrib>Battistuzzi, Gianantonio ; Borsari, Marco ; Cowan, James A ; Eicken, Christoph ; Loschi, Lodovica ; Sola, Marco</creatorcontrib><description>Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include:  (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.</description><identifier>ISSN: 0006-2960</identifier><identifier>EISSN: 1520-4995</identifier><identifier>DOI: 10.1021/bi982429x</identifier><identifier>PMID: 10220343</identifier><language>eng</language><publisher>United States: American Chemical Society</publisher><subject>acid-base balance ; Acid-Base Equilibrium ; Cucumis sativus ; cytochrome c ; Cytochrome c Group - chemistry ; Cytochrome c Group - metabolism ; Electrochemistry ; Hydrogen-Ion Concentration ; Ipomoea batatas ; mitochondria ; Mitochondria - enzymology ; Nuclear Magnetic Resonance, Biomolecular ; Oxidation-Reduction ; Protons ; Solanaceae ; Spinacia oleracea ; Temperature ; Thermodynamics</subject><ispartof>Biochemistry (Easton), 1999-04, Vol.38 (17), p.5553-5562</ispartof><rights>Copyright © 1999 American Chemical Society</rights><lds50>peer_reviewed</lds50><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</citedby><cites>FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,780,784,27924,27925</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/10220343$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Battistuzzi, Gianantonio</creatorcontrib><creatorcontrib>Borsari, Marco</creatorcontrib><creatorcontrib>Cowan, James A</creatorcontrib><creatorcontrib>Eicken, Christoph</creatorcontrib><creatorcontrib>Loschi, Lodovica</creatorcontrib><creatorcontrib>Sola, Marco</creatorcontrib><title>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</title><title>Biochemistry (Easton)</title><addtitle>Biochemistry</addtitle><description>Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include:  (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.</description><subject>acid-base balance</subject><subject>Acid-Base Equilibrium</subject><subject>Cucumis sativus</subject><subject>cytochrome c</subject><subject>Cytochrome c Group - chemistry</subject><subject>Cytochrome c Group - metabolism</subject><subject>Electrochemistry</subject><subject>Hydrogen-Ion Concentration</subject><subject>Ipomoea batatas</subject><subject>mitochondria</subject><subject>Mitochondria - enzymology</subject><subject>Nuclear Magnetic Resonance, Biomolecular</subject><subject>Oxidation-Reduction</subject><subject>Protons</subject><subject>Solanaceae</subject><subject>Spinacia oleracea</subject><subject>Temperature</subject><subject>Thermodynamics</subject><issn>0006-2960</issn><issn>1520-4995</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1999</creationdate><recordtype>article</recordtype><recordid>eNptkM9OFEEQhztGIit68AW0L5pwGOy_M9NHWFBJ1kBciNw6Pd3V0ji7Dd0zye4beOYReRKbDCEePFWq6qvKLx9C7yg5oITRz11QLRNMbV6gGZWMVEIp-RLNCCF1xVRNdtHrnG9KK0gjXqHdcsUIF3yGzn6Aixs8v4ZVyEPaYrN2-NAG9_Dn_shkwCd3Y-hDl4LB0ePvYYj2Oq5d6Xt83pv1gOfbx1mKK8jYvkE73vQZ3j7VPXT55eRi_q1anH09nR8uKsMbPlQUhLeOWuGk4LYBKhSTzsuadyCkqFvvwYKpOTjWNZ3xVtKuraV1XdmJhu-hT9Pf2xTvRsiDLvkt9CURxDHrWjWsOBEF3J9Am2LOCby-TWFl0lZToh_t6Wd7hX3_9HTsVuD-ISddBagmoLiCzfPepN-6bngj9cX5Uh8vro6vfi4Xmhb-w8R7E7X5lULWl0tGKCesVaoVbSE-ToSxWd_EMa2Ltf9E-wtYfZBN</recordid><startdate>19990427</startdate><enddate>19990427</enddate><creator>Battistuzzi, Gianantonio</creator><creator>Borsari, Marco</creator><creator>Cowan, James A</creator><creator>Eicken, Christoph</creator><creator>Loschi, Lodovica</creator><creator>Sola, Marco</creator><general>American Chemical Society</general><scope>FBQ</scope><scope>BSCLL</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope></search><sort><creationdate>19990427</creationdate><title>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</title><author>Battistuzzi, Gianantonio ; Borsari, Marco ; Cowan, James A ; Eicken, Christoph ; Loschi, Lodovica ; Sola, Marco</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1999</creationdate><topic>acid-base balance</topic><topic>Acid-Base Equilibrium</topic><topic>Cucumis sativus</topic><topic>cytochrome c</topic><topic>Cytochrome c Group - chemistry</topic><topic>Cytochrome c Group - metabolism</topic><topic>Electrochemistry</topic><topic>Hydrogen-Ion Concentration</topic><topic>Ipomoea batatas</topic><topic>mitochondria</topic><topic>Mitochondria - enzymology</topic><topic>Nuclear Magnetic Resonance, Biomolecular</topic><topic>Oxidation-Reduction</topic><topic>Protons</topic><topic>Solanaceae</topic><topic>Spinacia oleracea</topic><topic>Temperature</topic><topic>Thermodynamics</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Battistuzzi, Gianantonio</creatorcontrib><creatorcontrib>Borsari, Marco</creatorcontrib><creatorcontrib>Cowan, James A</creatorcontrib><creatorcontrib>Eicken, Christoph</creatorcontrib><creatorcontrib>Loschi, Lodovica</creatorcontrib><creatorcontrib>Sola, Marco</creatorcontrib><collection>AGRIS</collection><collection>Istex</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><jtitle>Biochemistry (Easton)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Battistuzzi, Gianantonio</au><au>Borsari, Marco</au><au>Cowan, James A</au><au>Eicken, Christoph</au><au>Loschi, Lodovica</au><au>Sola, Marco</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c</atitle><jtitle>Biochemistry (Easton)</jtitle><addtitle>Biochemistry</addtitle><date>1999-04-27</date><risdate>1999</risdate><volume>38</volume><issue>17</issue><spage>5553</spage><epage>5562</epage><pages>5553-5562</pages><issn>0006-2960</issn><eissn>1520-4995</eissn><abstract>Mitochondrial cytochromes c from spinach, cucumber, and sweet potato have been investigated through direct electrochemical measurements and electronic and 1H NMR spectroscopies, under conditions of varying temperature and pH. The solution behaviors of these plant cytochromes closely resemble, but do not fully reproduce, those of homologous eukaryotic species. The reduction potentials (E°‘) at pH 7 and 25 °C are +0.268 V (spinach), +0.271 V (cucumber), and +0.274 V (sweet potato) vs SHE. Three acid−base equilibria have been determined for the oxidized proteins with apparent pK a values of 2.5, 4.8, and 8.3−8.9, which are related to disruption of axial heme ligation, deprotonation of the solvent-exposed heme propionate-7 and replacement of the methionine axially bound to the heme iron with a stronger ligand, respectively. The most significant peculiarities with respect to the mammalian analogues include:  (i) less negative reduction enthalpies and entropies (ΔS°‘rc and ΔH°‘rc) for the various protein conformers [low- and high-T native (N1 and N2) and alkaline (A)], whose effects at pH 7 and 25 °C largely compensate to produce E°‘ values very similar to those of the mammalian proteins; (ii) the N1 → N2 transition that occurs at a lower temperature (e.g., 30−35 °C vs 50 °C at pH 7.5) and at a lower pH (7 vs 7.5); and (iii) a more pronounced temperature-induced decrease in the pK a for the alkaline transition which allows observation of the alkaline conformer(s) at pH values as low as 7 upon increasing the temperature above 40 °C. Regarding the pH and the temperature ranges of existence of the various protein conformers, these plant cytochromes c are closer to bacterial cytochromes c 2.</abstract><cop>United States</cop><pub>American Chemical Society</pub><pmid>10220343</pmid><doi>10.1021/bi982429x</doi><tpages>10</tpages></addata></record>
fulltext fulltext
identifier ISSN: 0006-2960
ispartof Biochemistry (Easton), 1999-04, Vol.38 (17), p.5553-5562
issn 0006-2960
1520-4995
language eng
recordid cdi_proquest_miscellaneous_69728244
source American Chemical Society:Jisc Collections:American Chemical Society Read & Publish Agreement 2022-2024 (Reading list)
subjects acid-base balance
Acid-Base Equilibrium
Cucumis sativus
cytochrome c
Cytochrome c Group - chemistry
Cytochrome c Group - metabolism
Electrochemistry
Hydrogen-Ion Concentration
Ipomoea batatas
mitochondria
Mitochondria - enzymology
Nuclear Magnetic Resonance, Biomolecular
Oxidation-Reduction
Protons
Solanaceae
Spinacia oleracea
Temperature
Thermodynamics
title Redox Chemistry and Acid−Base Equilibria of Mitochondrial Plant Cytochromes c
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-02T23%3A00%3A09IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Redox%20Chemistry%20and%20Acid%E2%88%92Base%20Equilibria%20of%20Mitochondrial%20Plant%20Cytochromes%20c&rft.jtitle=Biochemistry%20(Easton)&rft.au=Battistuzzi,%20Gianantonio&rft.date=1999-04-27&rft.volume=38&rft.issue=17&rft.spage=5553&rft.epage=5562&rft.pages=5553-5562&rft.issn=0006-2960&rft.eissn=1520-4995&rft_id=info:doi/10.1021/bi982429x&rft_dat=%3Cproquest_cross%3E69728244%3C/proquest_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a373t-1e4fcd1c4d543c7e14925df563be45468ffecea63ed2b7bafc51b865cdb68f473%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=69728244&rft_id=info:pmid/10220343&rfr_iscdi=true