Loading…

Modification of gene expression by dietary antioxidants in radiation-induced apoptosis of mice splenocytes

The modification of radiation-induced apoptosis in splenocytes by a vitamin-containing dietary supplement was studied. For 45 days prior to irradiation at a lethal dose of 6 Gy, mice received a dietary supplement containing vitamins with antioxidant properties and microelements. The expression of TR...

Full description

Saved in:
Bibliographic Details
Published in:Free radical biology & medicine 1999-04, Vol.26 (7), p.887-891
Main Authors: Ushakova, Tatyana, Melkonyan, Hovsep, Nikonova, Larisa, Afanasyev, Vladimir, Gaziev, Azhub I, Mudrik, Nikolai, Bradbury, Robert, Gogvadze, Vladimir
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The modification of radiation-induced apoptosis in splenocytes by a vitamin-containing dietary supplement was studied. For 45 days prior to irradiation at a lethal dose of 6 Gy, mice received a dietary supplement containing vitamins with antioxidant properties and microelements. The expression of TRPM-2 (a marker for programmed cell death), bcl-2 (the product of which has been shown to prevent apoptosis), superoxide dismutase, and catalase genes was studied at different time intervals after irradiation. Radiation-induced alterations in gene expression were different in the control and the antioxidant mixture-fed mice. The antioxidant mixture administration resulted in an inhibition of TRPM-2 expression both before and after irradiation. The bcl-2 mRNA content steadily increased after irradiation in splenocytes from antioxidant mixture-fed mice, while in the control group 2-h after irradiation only trace amount of bcl-2 mRNA was detected. In splenocytes from control mice, the expression of superoxide dismutase and catalase genes significantly decreased within 2-h after irradiation; whereas in mice receiving the antioxidant mixture, inhibition of catalase gene expression was not as prominent. The expression of superoxide dismutase gene was still high 24-h after irradiation. The antioxidant administration decreased the radiation-induced apoptosis and delayed internucleosomal fragmentation of DNA. Our data suggest that radiation-induced alteration of gene expression is, at least in part, determined by reactive oxygen species.
ISSN:0891-5849
1873-4596
DOI:10.1016/S0891-5849(98)00281-0