Loading…

A molecular model of a point mutation (Val297Met) in the serine protease domain of protein C

A heterozygous GTG to ATG (Val297Met) mutation was detected in a patient with inherited protein C deficiency and deep vein thrombosis. Cosegregation of the mutation with protein C deficiency was observed through a family pedigree study. Molecular models of the serine protease domains of wild type an...

Full description

Saved in:
Bibliographic Details
Published in:Experimental & molecular medicine 1999-03, Vol.31 (1), p.47-51
Main Authors: Song, K S, Park, Y S, Choi, J R, Kim, H K, Park, Q
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A heterozygous GTG to ATG (Val297Met) mutation was detected in a patient with inherited protein C deficiency and deep vein thrombosis. Cosegregation of the mutation with protein C deficiency was observed through a family pedigree study. Molecular models of the serine protease domains of wild type and mutant protein C were constructed by standard comparative method. Val 297 was found to be located in the hydrophobic core of the protein. Although the substitution of Met for Val does not greatly alter the hydrophobicity of the protein, it introduces a bulkier side chain, which yields steric hindrance between this residue and adjacent residues, such as Met364, Tyr393, Ile321, Ile323, and Val378. It seems that the Met can not fit into the tight packing into which it is trapped, thereby probably inducing misfolding and/or greater instability of the protein. Such misfolding and/or instability thereby eventually disturbs the catalytic triad, in consistent with the observed type I deficiency state.
ISSN:1226-3613
2092-6413
2092-6413
DOI:10.1038/emm.1999.8