Loading…

Epigallocatechin gallate promotes GLUT4 translocation in skeletal muscle

In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal mus...

Full description

Saved in:
Bibliographic Details
Published in:Biochemical and biophysical research communications 2008-12, Vol.377 (1), p.286-290
Main Authors: Ueda, Manabu, Nishiumi, Shin, Nagayasu, Hironobu, Fukuda, Itsuko, Yoshida, Ken-ichi, Ashida, Hitoshi
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this study, we investigated whether epigallocatechin gallate (EGCg) affects glucose uptake activity and the translocation of insulin-sensitive glucose transporter (GLUT) 4 in skeletal muscle. A single oral administration of EGCg at 75 mg/kg body weight promoted GLUT4 translocation in skeletal muscle of rats. EGCg significantly increased glucose uptake accompanying GLUT4 translocation in L6 myotubes at 1 nM. The translocation of GLUT4 was also observed both in skeletal muscle of mice and rats ex vivo and in insulin-resistant L6 myotubes. Wortmannin, an inhibitor of phosphatidylinositol 3′-kinase, inhibited both EGCg- and insulin-increased glucose uptakes, while genistein, an inhibitor of tyrosine kinase, failed to inhibit the EGCg-increased uptake. Therefore, EGCg may improve hyperglycemia by promoting GLUT4 translocation in skeletal muscle with partially different mechanism from insulin.
ISSN:0006-291X
1090-2104
DOI:10.1016/j.bbrc.2008.09.128