Loading…

Embryo metabolism during the expansion of the bovine blastocyst

Embryo metabolism was evaluated during re‐expansion of in vitro produced bovine blastocysts collapsed with cytochalasin D (CCD) and incubated in the presence and absence of ouabain, a specific inhibitor of the Na+, K+ pump. Day 8 expanded blastocysts were treated for 2 to 4 hr with 20 μg/ml CCD. Fou...

Full description

Saved in:
Bibliographic Details
Published in:Molecular reproduction and development 1999-06, Vol.53 (2), p.171-178
Main Authors: Donnay, I, Leese, H.J
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Embryo metabolism was evaluated during re‐expansion of in vitro produced bovine blastocysts collapsed with cytochalasin D (CCD) and incubated in the presence and absence of ouabain, a specific inhibitor of the Na+, K+ pump. Day 8 expanded blastocysts were treated for 2 to 4 hr with 20 μg/ml CCD. Four conditions were tested: untreated embryos and embryos collapsed with CCD and allowed to re‐expand for 4 hr in the presence of 0 M, 1 nM, or 1 μM ouabain. Incubation of collapsed embryos for 4 hr in the presence of 1 nM or 1 μM ouabain significantly inhibited blastocyst re‐expansion. Glucose, pyruvate, and amino lactate uptake/release were not significantly affected by ouabain treatment and did not correlate with the degree of blastocyst re‐expansion. Few variations in the uptake/release of amino acids by the embryos were observed. Ouabain treatment significantly decreased oxygen uptake which directly correlated with the degree of blastocyst re‐expansion. For embryos allowed to re‐expand in the presence or absence of ouabain, a direct correlation was observed between the uptake of oxygen and of glucose. One mM cyanide or 2,4 dinitrophenol inhibited blastocyst re‐expansion although 0.01 and 0.1 mM were ineffective. This study indicates a role for oxidative metabolism in providing the energy necessary for blastocoel expansion in the bovine. Nevertheless, blastocyst expansion is relatively insensitive to inhibition of oxidative phosphorylation indicating the ability of the bovine blastocyst to adapt to hypoxic conditions. Mol. Reprod. Dev. 53:171–178, 1999. © 1999 Wiley‐Liss, Inc.
ISSN:1040-452X
1098-2795
DOI:10.1002/(SICI)1098-2795(199906)53:2<171::AID-MRD6>3.0.CO;2-F