Loading…

Incorporation of Molybdenum into the Iron-Molybdenum Cofactor of Nitrogenase

The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase was investigated using99Mo to follow the incorporation of Mo into precursors. 99Mo label accumulates on dinitrogenase only when all known components of the FeMo-co synthesis system, NifH, NifNE, NifB-cofactor, homocitrate, M...

Full description

Saved in:
Bibliographic Details
Published in:The Journal of biological chemistry 1999-05, Vol.274 (22), p.15869-15874
Main Authors: Allen, Ronda M., Roll, Jon T., Rangaraj, Priya, Shah, Vinod K., Roberts, Gary P., Ludden, Paul W.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The biosynthesis of the iron-molybdenum cofactor (FeMo-co) of dinitrogenase was investigated using99Mo to follow the incorporation of Mo into precursors. 99Mo label accumulates on dinitrogenase only when all known components of the FeMo-co synthesis system, NifH, NifNE, NifB-cofactor, homocitrate, MgATP, and reductant, are present. Furthermore, 99Mo label accumulates only on the gamma protein, which has been shown to serve as a chaperone/insertase for the maturation of apodinitrogenase when all known components are present. It appears that only completed FeMo-co can accumulate on the gamma protein. Very little FeMo-co synthesis was observed when all known components are used in purified forms, indicating that additional factors are required for optimal FeMo-co synthesis. 99Mo did not accumulate on NifNE under any conditions tested, suggesting that Mo enters the pathway at some other step, although it remains possible that a Mo-containing precursor of FeMo-co that is not sufficiently stable to persist during gel electrophoresis occurs but is not observed. 99Mo accumulates on several unidentified species, which may be the additional components required for FeMo-co synthesis. The molybdenum storage protein was observed and the accumulation of 99Mo on this protein required nucleotide.
ISSN:0021-9258
1083-351X
DOI:10.1074/jbc.274.22.15869