Loading…

Bone's Early Responses to Mechanical Loading Differ in Distinct Genetic Strains of Chick: Selection for Enhanced Growth Reduces Skeletal Adaptability

Bone's functional competence is established and maintained, at least partly, by mechanisms involving appropriate adaptation to mechanical loading. These appear to fail in chickens selectively bred either for maximum egg (Egg‐type) or meat (Meat‐type) production, which show high rates of fractur...

Full description

Saved in:
Bibliographic Details
Published in:Journal of bone and mineral research 1999-06, Vol.14 (6), p.980-987
Main Authors: Pitsillides, Andrew A., Rawlinson, Simon C. F., Mosley, John R., Lanyon, Lance E.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Bone's functional competence is established and maintained, at least partly, by mechanisms involving appropriate adaptation to mechanical loading. These appear to fail in chickens selectively bred either for maximum egg (Egg‐type) or meat (Meat‐type) production, which show high rates of fracture and skeletal abnormality, respectively. By measuring several early strain‐induced responses in cultured embryonic tibiotarsi from commercially bred (Egg‐type and Meat‐type) and wild‐type (Wild‐type) chicks, we have investigated the possibility that these skeletal failures are the product of a compromised ability to respond appropriately to loading‐induced mechanical strain. Axial loads engendering peak dynamic (1 Hz) longitudinal strains of between −1300 με and −1500 με (for 10 minutes) in vitro in tibiotarsi from the three types of 18‐day‐old chicks increased periosteal osteoblast glucose 6‐phosphate dehydrogenase (G6PD) activity in both Wild‐type (26%, p < 0.01) and Egg‐type (49%, p < 0.001) chicks in situ, while Meat‐type chicks did not show any significant changes (11%). Load‐induced increases in medium nitrite accumulation (stable nitric oxide [NO] metabolite) were produced in Egg‐type and Wild‐type tibiotarsi (82 ± 12%, p < 0.01; 39 ± 8%, p < 0.01), respectively. In contrast, loading produced no change in NO release from Meat‐type chick tibiotarsi. These changes in NO release correlated with load‐related increases in G6PD activity (R2 = 0.98, p < 0.05) in the different chick types. Wild‐type and Meat‐type tibiotarsal periosteal osteoblasts responded in a biphasic manner to exogenous prostacyclin (PGI2), with maximal stimulation of G6PD activity at 10−7 M and 10−6 M PGI2. However, Egg‐type chick osteoblasts showed smaller, progressive increases up to 10−5 M PGI2. These results indicate that early phases of the adaptive response to loading differ in different genetic strains of embryonic chick; that skeletal abnormalities which develop in genetically selected, high growth rate chicks may reflect a compromised ability to respond to load; and that load‐induced increases in osteoblastic G6PD activity appear to be closely associated with increased rates of NO release. It is probable that similar genetically related differences in bones' responsiveness to mechanical loading occur in other species.
ISSN:0884-0431
1523-4681
DOI:10.1359/jbmr.1999.14.6.980