Loading…
Inhibition of the Alloimmune Response through the Generation of Regulatory T Cells by a MHC Class II-Derived Peptide
We have previously shown that HLA-DQA1, a peptide derived from a highly conserved region of MHC class II, prevents alloreactive T cell priming and effector function in vivo, although underlying mechanisms are obscure. In this study, we demonstrate that 28% of mice treated with HLA-DQA1 combined with...
Saved in:
Published in: | The Journal of immunology (1950) 2008-12, Vol.181 (11), p.7499-7506 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | We have previously shown that HLA-DQA1, a peptide derived from a highly conserved region of MHC class II, prevents alloreactive T cell priming and effector function in vivo, although underlying mechanisms are obscure. In this study, we demonstrate that 28% of mice treated with HLA-DQA1 combined with low-dose rapamycin achieved permanent engraftment of fully MHC-disparate islet allografts and significantly prolonged survival in the remaining animals (log rank, p < 0.001). Immunohistologic examination of the grafts from HLA-DQA1/rapamycin-treated animals revealed up-regulated expression of TGF-ss and FoxP3. In vivo administration of blocking anti-TGF-ss or depleting anti-CD25 mAb augmented T cell alloimmunity and prevented the long-term engraft induced by HLA-DQA1. In vitro experiments further showed that HLA-DQA1 induced differentiation of CD4(+) T cells into CD4(+)CD25(+)FoxP3(+) regulatory T cells. Together, these data provide the first demonstration that HLA-DQA1, a MHC class II-derived peptide, can prolong allograft survival via a TGF-beta and regulatory T cell-dependent mechanisms. |
---|---|
ISSN: | 0022-1767 1550-6606 |
DOI: | 10.4049/jimmunol.181.11.7499 |