Loading…

expression of the trpD, trpC and trpBA genes of Streptomyces coelicolor A3(2) is regulated by growth rate and growth phase but not by feedback repression

Transformation of tryptophan auxotrophs of Streptomyces coelicolor A3(2) and subsequent analysis have allowed the identification of four tryptophan biosynthetic genes. Subcloning, complementation of trp strains, nucleotide sequencing of 5.1 kb and 1.95 kb of DNA and subsequent homology comparisons i...

Full description

Saved in:
Bibliographic Details
Published in:Molecular microbiology 1999-05, Vol.32 (4), p.869-880
Main Authors: Hu, D.S.J, Hood, D.W, Heidstra, R, Hodgson, D.A
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Transformation of tryptophan auxotrophs of Streptomyces coelicolor A3(2) and subsequent analysis have allowed the identification of four tryptophan biosynthetic genes. Subcloning, complementation of trp strains, nucleotide sequencing of 5.1 kb and 1.95 kb of DNA and subsequent homology comparisons identified the trpC, trpB and trpA genes and trpD gene respectively. The arrangement of genes in the trpCBA cluster is unusual in that trpC is separated by a small open reading frame, trpX, from the potentially translationally coupled trpB and trpA genes. Sequence analysis of the trpD gene revealed the presence of a large mRNA loop structure directly upstream of the trpD‐coding region. S1 nuclease mapping studies of trpCXBA have revealed two major potential transcription start points, one just upstream of the trpC gene and the other located upstream of the trpX gene. S1 nuclease mapping of the trpD region revealed four fragment end‐points. Quantitative S1 nuclease protection assays and a promoterless catechol dioxygenase reporter gene have revealed that the expression of all these genes is growth phase dependent and growth rate dependent, expression being maximal during early exponential phase and dropping off sharply in late exponential phase. This growth phase‐dependent and growth rate‐dependent regulation is the first reported in streptomycete primary metabolism.
ISSN:0950-382X
1365-2958
DOI:10.1046/j.1365-2958.1999.01407.x