Loading…
A unique mutation of ALK2, G356D, found in a patient with fibrodysplasia ossificans progressiva is a moderately activated BMP type I receptor
Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant congenital disorder characterized by progressive heterotopic bone formation in muscle tissues. A common mutation among FOP patients has been identified in ALK2, ALK2(R206H), which encodes a constitutively active bone morphogene...
Saved in:
Published in: | Biochemical and biophysical research communications 2008-12, Vol.377 (3), p.905-909 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Fibrodysplasia ossificans progressiva (FOP) is a rare autosomal dominant congenital disorder characterized by progressive heterotopic bone formation in muscle tissues. A common mutation among FOP patients has been identified in
ALK2, ALK2(R206H), which encodes a constitutively active bone morphogenetic protein (BMP) receptor. Recently, a unique mutation of ALK2, ALK2(G356D), was identified to be a novel mutation in a Japanese FOP patient who had unique clinical features. Over-expression of ALK2(G356D) induced phosphorylation of Smad1/5/8 and activated Id1-luc and alkaline phosphatase activity in myoblasts. However, the over-expression failed to activate phosphorylation of p38, ERK1/2, and CAGA-luc activity. These ALK2(G356D) activities were weaker than those of ALK2(R206H), and they were suppressed by a specific inhibitor of the BMP-regulated Smad pathway. These findings suggest that ALK2(G356D) induces heterotopic bone formation via activation of a BMP-regulated Smad pathway. The quantitative difference between ALK2(G356D) and ALK2(R206H) activities may have caused the phenotypic differences in these patients. |
---|---|
ISSN: | 0006-291X 1090-2104 |
DOI: | 10.1016/j.bbrc.2008.10.093 |