Loading…
Kinase switching in mesenchymal-like non-small cell lung cancer lines contributes to EGFR inhibitor resistance through pathway redundancy
NSCLC cells with a mesenchymal phenotype have shown a marked reduction in sensitivity to EGFR inhibitors, though the molecular rationale has remained obscure. Here we find that in mesenchymal-like tumor cells both tyrosine phosphorylation of EGFR, ErbB2, and ErbB3 signaling networks and expression o...
Saved in:
Published in: | Clinical & experimental metastasis 2008-12, Vol.25 (8), p.843-854 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | NSCLC cells with a mesenchymal phenotype have shown a marked reduction in sensitivity to EGFR inhibitors, though the molecular rationale has remained obscure. Here we find that in mesenchymal-like tumor cells both tyrosine phosphorylation of EGFR, ErbB2, and ErbB3 signaling networks and expression of EGFR family ligands were decreased. While chronic activation of EGFR can promote an EMT-like transition, once having occurred EGFR family signaling was attenuated. We investigated the mechanisms by which mesenchymal-like cells bypass EGFR signaling and acquire alternative routes of proliferative and survival signaling. Mesenchymal-like NSCLC cells exhibit aberrant PDGFR and FGFR expression and autocrine signaling through these receptors can activate the MEK-ERK and PI3K pathways. Selective pharmacological inhibition of PDGFR or FGFR receptor tyrosine kinases reduced cell proliferation in mesenchymal-like but not epithelial NSCLC cell lines. A metastable, reversible EMT-like transition in the NSCLC line H358 was achieved by exogenous TGFβ, which served as a model EMT system. The H358/TGFβ cells showed many of the attributes of established mesenchymal-like NSCLC cells including a loss of cell-cell junctions, a loss of EGF-family ligand expression, a loss of ErbB3 expression, increased EGFR-independent Mek-Erk pathway activation and reduced sensitivity to EGFR inhibition. Notably an EMT-dependent acquisition of PDGFR, FGFR and TGFβ receptors in H358/TGFbeta cells was also observed. In H358/TGFbeta cells both PDGFR and FGFR showed functional ligand stimulation of their intrinsic tyrosine kinase activities. The findings of kinase switching and acquired PDGFR and FGFR signaling suggest investigation of new inhibitor combinations to target NSCLC metastases. |
---|---|
ISSN: | 0262-0898 1573-7276 |
DOI: | 10.1007/s10585-008-9200-4 |